Electronic Supporting Information

Hydrophobic functionalization of metal-organic framework as ammonia visual sensing material for high humidity

Yuxin Wang^a, Zhengxuan Song^a, Yutao Liu^a, Yang Chen^a, Jinping Li^a, Libo Li^{a*}, Jia Yao^{b*}

^aCollege of Chemical Engineering and Technology, State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, China. ^bDepartment of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030024, China

E-mail: lilibo@tyut.edu.cn; yaojia2006@163.com

Fig. S1 Digital images of static volumetric device.

Fig. S2 Electrophilicity of Cu(BDC) and functionalized Cu(BDC).

Fig. S3 SEM images of CH₃-Cu(BDC) (a-b), NH₃@CH₃-Cu(BDC) (c-d), activated CH₃-Cu(BDC) (e-f) and NH₃@CH₃-Cu(BDC) after 10 cycles (g-h).

Fig. S4 PXRD profiles of CH_3 -Cu(BDC) samples soaked in the aqueous solutions with pH = 1, 3, 5, 7, 9, 11, 13 solution for 24 h.

Fig. S5 N_2 sorption isotherms of CH₃-Cu(BDC) and Cu(BDC) at 77 K. The Brunauer-Emmett-Teller (BET) surface area was 339 m²g⁻¹, there is decreased by 44% compared with Cu(BDC) (603 m²g⁻¹)

Fig. S6 The pore-size distribution of CH₃-Cu(BDC) and Cu(BDC).

Fig. S7 Ammonia adsorption isotherm of CH₃-Cu(BDC).

Fig. S8 Digital images of CH_3 -Cu(BDC) after exposed to 25, 50 and 75 ppm NH_3 for different times.

Fig. S9 UV-vis DRS of Cu(BDC) exposed to 50 ppm NH₃ for 25 min.

Fig. S10 FT-IR spectra of CH₃-Cu(BDC) and NH₃@CH₃-Cu(BDC).

Fig. S11 (a) UV-Vis DRS of CH₃-Cu(BDC) after exposed to 2, 3, 4, 5, 7, 9, 11, 13 and 15 ppm ammonia. (b) Absorbance curve over ammonia levels.

Fig. S12 Digital images of CH₃-Cu(BDC) after exposed to 2, 3, 4, 5, 7, 9, 11, 13 and 15 ppm ammonia.

Fig. S13 UV-Vis DRS of CH₃-Cu(BDC) after exposed to different relative humidity.

Fig. S14 UV-Vis DRS of CH₃-Cu(BDC) exposed to 50 ppm NH₃ with different relative humidity.

Fig. S15 Response of CH_3 -Cu(BDC) against NH_3 and other exhaled air. The concentration of acetone, acetaldehyde, methanol and ethanol were 50 ppm, the rest of gases were high-purity.

Fig. S16 (a-b) UV-Vis DRS of CH₃-Cu(BDC) exposed to 50 ppm methyl amine (a) and triethyl amine (b) atmosphere. (c) Response of CH₃-Cu(BDC) against NH₃ and bulkier amines.

Fig. S17 GCMC simulations of H_2O and NH_3 adsorption sites in Cu(BDC) and CH₃-Cu(BDC).

Fig. S18 GCMC simulations of the competitive adsorption between H_2O and NH_3 on CH_3 -Cu(BDC) (50 ppm NH_3 , 95 % RH).

Fig. S19 Electrostatic potential patterns of (a) CH_3 -Cu(BDC), (b) $H_2O@CH_3$ -Cu(BDC) and $NH_3@CH_3$ -Cu(BDC).

Items	Blood ammonia	Exhale ammonia	Abnormal
Reference value	10.0-47.0 umol L ⁻¹	0.05-1.5 ppm	
Patient 1	48.3 umol L ⁻¹	3.05 ppm	1
Patient 2	50.0 umol L ⁻¹	3.88 ppm	1
Patient 3	50.1 umol L ⁻¹	3.91 ppm	1

 Table S1 Compared of blood test and exhale test.

Fig. S20 PXRD patterns of CH₃-Cu-BTC for 1 day and 2 months in the atmospheric environment.

Fig. S21 PXRD patterns of CH₃-Cu-BTC and NH₃@CH₃-Cu(BDC).

Fig. S22 TGA curves of $NH_3@CH_3-Cu(BDC)$ under N_2 flow. The result show that the NH_3 in $NH_3@CH_3-Cu(BDC)$ will be desorbed at 80 °C

Fig. S23 Response to NH₃ (50 ppm) during 10 cycles of adsorption and desorption.