# Diversity of Transformation of Heteroallenes on Acenaphthene-1,2-diimine Aluminum Oxide

Tatyana S. Koptseva<sup>1</sup>, Alexandra A. Skatova<sup>1</sup>, Mikhail V. Moskalev<sup>1</sup>, Roman V. Rumyantcev<sup>1</sup> and Igor L. Fedushkin<sup>1\*</sup>

<sup>1</sup>G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Tropinina 49, Nizhny Novgorod 603137, Russian Federation

## Table 1S. Crystal data and structure refinement details for compounds 2-7.

|                                                | 2                                            | 3                                                                             | 4                                            | 5                                                                               | 6                                         | 7                                                                                            |
|------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|
| Empirical Formula                              | C94H100Al2N5O3                               | C <sub>86</sub> H <sub>99</sub> Al <sub>2</sub> N <sub>5</sub> O <sub>3</sub> | C99.38H134.50Al2N6O2                         | C <sub>90</sub> H <sub>117</sub> Al <sub>2</sub> BN <sub>4</sub> O <sub>7</sub> | C106H128Al2BN5O5                          | C <sub>84</sub> H <sub>88</sub> Al <sub>2</sub> B <sub>2</sub> N <sub>4</sub> O <sub>7</sub> |
| М                                              | 1401.74                                      | 1304.66                                                                       | 1499.08                                      | 1431.64                                                                         | 1616.90                                   | 1341.16                                                                                      |
| T/K                                            | 100(2)                                       | 100(2)                                                                        | 100(2)                                       | 100(2)                                                                          | 100(2)                                    | 100(2)                                                                                       |
| Crystal System                                 | Monoclinic                                   | Orthorhombic                                                                  | Triclinic                                    | Triclinic                                                                       | Monoclinic                                | Monoclinic                                                                                   |
| Space Group                                    | <i>P</i> 2 <sub>1</sub> /c                   | Pna2₁                                                                         | P-1                                          | P-1                                                                             | Ст                                        | P21/n                                                                                        |
| a/Å                                            | 23.6752(2)                                   | 28.4173(15)                                                                   | 12.4538(2)                                   | 12.4182(2)                                                                      | 14.8161(4)                                | 12.8530(12)                                                                                  |
| b/Å                                            | 13.4747(1)                                   | 12.7221(7)                                                                    | 18.3729(3)                                   | 12.9986(3)                                                                      | 21.5593(4)                                | 22.1044(18)                                                                                  |
| c/Å                                            | 13.4747(1)                                   | 20.6197(10)                                                                   | 21.5379(4)                                   | 14.7000(3)                                                                      | 14.4379(4)                                | 13.1216(10)                                                                                  |
| α/deg                                          | 90                                           | 90                                                                            | 81.328(2)                                    | 66.956(2)                                                                       | 90                                        | 90                                                                                           |
| β/deg                                          | 97.428(1)                                    | 90                                                                            | 75.143(2)                                    | 69.651(2)                                                                       | 92.943(2)                                 | 92.077(7)                                                                                    |
| γ/deg                                          | 90                                           | 90                                                                            | 73.658(2)                                    | 88.084(2)                                                                       | 90                                        | 90                                                                                           |
| V/Å <sup>3</sup>                               | 7920.62(13)                                  | 7454.6(7)                                                                     | 4554.49(15)                                  | 2032.70(8)                                                                      | 4605.7(2)                                 | 3725.5(5)                                                                                    |
| Z                                              | 4                                            | 4                                                                             | 2                                            | 1                                                                               | 2                                         | 2                                                                                            |
| d <sub>calc</sub> /Mg m <sup>-3</sup>          | 1.175                                        | 1.162                                                                         | 1.093                                        | 1.170                                                                           | 1.166                                     | 1.196                                                                                        |
| μ(Mo Kα)/mm⁻¹                                  | 0.091                                        | 0.091                                                                         | 0.082                                        | 0.092                                                                           | 0.088                                     | 0.097                                                                                        |
| F(000)                                         | 2996                                         | 2800                                                                          | 1630                                         | 772                                                                             | 1740                                      | 1424                                                                                         |
| Crystal Size/mm                                | 0.58 × 0.31 × 0.29                           | 0.28 × 0.23 × 0.18                                                            | 0.55 × 0.38 × 0.30                           | 0.63 × 0.31 × 0.20                                                              | 0.62 × 0.47 × 0.23                        | 0.60 × 0.23 × 0.10                                                                           |
| θ range/deg                                    | 2.228–30.508                                 | 2.365–25.025                                                                  | 2.191–28.000                                 | 2.249–29.129                                                                    | 2.232–26.733                              | 2.179–26.022                                                                                 |
| Limiting indices                               | –13 ≤ h ≤ 33<br>–19 ≤ k ≤ 19<br>–35 ≤ l ≤ 35 | -33 ≤ h ≤ 32<br>-15 ≤ k ≤ 15<br>-24 ≤ l ≤ 24                                  | -16 ≤ h ≤ 16<br>-24 ≤ k ≤ 24<br>-28 ≤ l ≤ 28 | -17 ≤ h ≤ 17<br>-17 ≤ k ≤ 17<br>-20 ≤ l ≤ 20                                    | 18 ≤ h ≤ 18<br>27 ≤ k ≤ 27<br>18 ≤ l ≤ 17 | -15 ≤ h ≤ 15<br>-27 ≤ k ≤ 27<br>-16 ≤ l ≤ 16                                                 |
| Reflections Collected/<br>Unique               | 156778 / 24148                               | 72003 / 13075                                                                 | 54832 / 7556                                 | 37428 / 10903                                                                   | 30266 / 9633                              | 84321 / 7335                                                                                 |
| Rint                                           | 0.0581                                       | 0.1449                                                                        | 0.0464                                       | 0.0414                                                                          | 0.0306                                    | 0.0972                                                                                       |
| Data/Restraints/<br>Parameters                 | 24148 / 109 / 984                            | 13075 / 3 / 882                                                               | 21964 / 496 / 1338                           | 10903 / 200 / 582                                                               | 9633 / 213 / 609                          | 7335 / 253 / 460                                                                             |
| S                                              | 1.017                                        | 1.044                                                                         | 1.063                                        | 1.051                                                                           | 1.064                                     | 1.015                                                                                        |
| R <sub>1</sub> / wR <sub>2</sub> (I>2σ(I))     | 0.0548 / 0.1270                              | 0.0735 / 0.1384                                                               | 0.0899 / 0.2647                              | 0.0859 / 0.2115                                                                 | 0.0733 / 0.2030                           | 0.0605 / 0.1284                                                                              |
| R1 / wR2 (all data)                            | 0.0936 / 0.1473                              | 0.1217 / 0.1622                                                               | 0.1448 / 0.2969                              | 0.1252/ 0.2351                                                                  | 0.0843 / 0.2165                           | 0.1044 / 0.1512                                                                              |
| Larg. Diff. Peak and<br>Hole/e Å <sup>-3</sup> | 0.629 / -0.371                               | 0.291 / -0.280                                                                | 0.901 / -0.633                               | 0.941 / -0.684                                                                  | 0.779 / -0.441                            | 0.848 / -0.544                                                                               |

| Bond             | 2          | Bond             | 3         |
|------------------|------------|------------------|-----------|
| AI(1)–N(1)       | 1.9069(13) | AI(1)–N(1)       | 1.915(5)  |
| AI(1)–N(2)       | 1.8898(13) | AI(1)–N(2)       | 1.892(5)  |
| N(1)–C(1)        | 1.3389(18) | N(1)–C(1)        | 1.346(8)  |
| N(2)–C(2)        | 1.3395(18) | N(2)–C(2)        | 1.341(8)  |
| C(1)–C(2)        | 1.4360(19) | C(1)–C(2)        | 1.430(8)  |
| AI(2)–N(3)       | 1.9099(13) | AI(2)–N(3)       | 1.893(5)  |
| AI(2)–N(4)       | 1.8916(13) | AI(2)–N(4)       | 1.915(5)  |
| N(3)–C(37)       | 1.3367(18) | N(3)–C(37)       | 1.350(7)  |
| N(4)–C(38)       | 1.3391(19) | N(4)–C(38)       | 1.349(8)  |
| C(37)–C(38)      | 1.435(2)   | C(37)–C(38)      | 1.419(8)  |
| AI(1)–O(1)       | 1.6924(11) | AI(1)–O(1)       | 1.692(4)  |
| AI(1)–O(3)       | 1.7571(12) | AI(1)–O(2)       | 1.747(4)  |
| AI(2)–O(1)       | 1.6922(12) | AI(2)–O(1)       | 1.709(4)  |
| AI(2)–O(2)       | 1.7622(12) | AI(2)–O(3)       | 1.748(4)  |
| O(2)–C(73)       | 1.3398(19) | O(2)–C(73)       | 1.343(7)  |
| O(3)–C(73)       | 1.3180(19) | O(3)–C(73)       | 1.354(7)  |
| N(5)–C(73)       | 1.282(2)   | N(5)–C(73)       | 1.271(8)  |
|                  |            |                  |           |
| Angle            |            | Angle            |           |
| O(1)–Al(1)–O(3)  | 109.26(6)  | O(1)–Al(1)–O(2)  | 109.3(2)  |
| N(2)–Al(1)–N(1)  | 88.73(5)   | N(2)–Al(1)–N(1)  | 87.9(2)   |
| O(1)–AI(2)–O(2)  | 109.37(6)  | O(1)–Al(2)–O(3)  | 109.7(2)  |
| N(4)–AI(2)–N(3)  | 88.50(5)   | N(4)–Al(2)–N(3)  | 88.8(2)   |
| AI(2)–O(1)–AI(1) | 117.93(7)  | AI(2)–O(1)–AI(1) | 118.3(2)  |
| O(3)–C(73)–O(2)  | 115.94(14) | O(3)–C(73)–O(2)  | 115.8(5)  |
|                  |            | Denal            | _         |
| Bond             | 4          | Bond             | 5         |
| AI(1)–N(1)       | 1.914(2)   | AI(1)–N(1)       | 1.928(2)  |
| AI(1)–N(2)       | 1.930(2)   | AI(1)–N(2)       | 1.932(2)  |
| N(1)–C(1)        | 1.339(3)   | N(1)–C(1)        | 1.333(3)  |
| N(2)–C(2)        | 1.341(3)   | N(2)–C(2)        | 1.337(3)  |
| C(1)–C(2)        | 1.427(4)   | C(1)–C(2)        | 1.434(4)  |
| AI(2)–N(3)       | 1.919(2)   | AI(1)–O(1)       | 1.6832(8) |
| AI(2)–N(4)       | 1.930(2)   | AI(1)–H(1)       | 1.541(3)  |
| N(3)–C(37)       | 1.341(4)   | AI(1)–O(2)       | 1.670(4)  |
| N(4)–C(38)       | 1.336(3)   |                  |           |
| C(37)–C(38)      | 1.443(4)   |                  |           |

| Table 2S. | Selected b | ond lengths | s [Å] and a | ngles [°] for | complexes 2-7. |
|-----------|------------|-------------|-------------|---------------|----------------|

| AI(1)–O(1)          | 1.6823(19) |                |
|---------------------|------------|----------------|
| AI(1)–O(2)          | 1.579(4)   |                |
| AI(2)–N(5)          | 2.060(5)   |                |
| AI(2)–O(1)          | 1.691(2)   |                |
| O(2)–C(73)          | 1.343(6)   |                |
| N(5)–C(73)          | 1.413(6)   |                |
| N(6)–C(73)          | 1.280(6)   |                |
| Angle               |            | Angle          |
|                     | 444 70(47) |                |
| O(1) - AI(1) - O(2) | 111.76(17) | O(1) - AI(1) - |
| N(2)–Al(1)–N(1)     | 87.45(10)  | N(2)–Al(1)–    |
| O(1)–Al(2)–N(5)     | 108.01(15) | Al(1')-O(1)-   |
|                     |            |                |

87.68(10)

117.34(11)

116.3(4)

N(4)-AI(2)-N(3)

AI(2)–O(1)–AI(1)

N(5)-C(73)-O(2)

| O(1)–Al(1)–O(2)   | 115.4(3) |
|-------------------|----------|
| N(2)–Al(1)–N(1)   | 86.83(9) |
| AI(1')-O(1)-AI(1) | 180.0    |
| O(1)–Al(1)–H(1)   | 111(5)   |
|                   |          |

| Bond             | 6          | Bond              | 7          |
|------------------|------------|-------------------|------------|
| AI(1)–N(1)       | 1.921(4)   | AI(1)–N(1)        | 1.921(2)   |
| N(1)–C(1)        | 1.338(6)   | AI(1)–N(2)        | 1.916(2)   |
| C(1)–C(1)'       | 1.429(8)   | N(1)–C(1)         | 1.339(3)   |
| AI(2)–N(2)       | 1.940(4)   | N(2)–C(2)         | 1.338(3)   |
| N(2)–C(20)       | 1.338(6)   | C(1)–C(2)         | 1.426(4)   |
| C(20)–C(20)'     | 1.449(8)   | AI(1)–O(1)        | 1.6783(7)  |
| AI(1)–O(1)       | 1.748(6)   | AI(1)–O(2)        | 1.7324(18) |
| AI(1)–O(3)       | 1.683(6)   | O(2)–B(1)         | 1.309(4)   |
| AI(2)–O(2)       | 1.701(6)   |                   |            |
| AI(2)–O(3)       | 1.683(6)   |                   |            |
| O(1)–C(39)       | 1.282(10)  |                   |            |
| N(3)–C(39)       | 1.246(11)  |                   |            |
| O(2)–B(1)        | 1.396(10)) |                   |            |
| Angle            |            | Angle             |            |
| O(1)–Al(1)–O(3)  | 113.3(3)   | O(1)–AI(1)–O(2)   | 114.45(7)  |
| N(1)–AI(1)–N(1)' | 87.0(2)    | N(1)–Al(1)–N(2)   | 87.11(9)   |
| O(2)–AI(2)–O(3)  | 114.6(3)   | AI(1)–O(1)–AI(1') | 180.00(3)  |
| N(2)–AI(2)–N(2)' | 86.7(2)    |                   |            |
| AI(2)–O(3)–AI(1) | 179.9(4)   |                   |            |



Figure S1.ESR spectrum of compound 2 (2-MeTHF, 130 K): (a) experimental; (b) simulated (g = 2.0068, D = 6.36 mT, E = 0.48 mT).



**Figure S2.** ESR spectrum of compound **3** (toluene, 150 K): (a) experimental; (b) simulated (g = 2.0054, D = 6.53 mT, E = 0 mT).



Figure S3. ESR spectrum of compound 4 (2-MeTHF, 130 K): (a) experimental; (b) simulated (g = 2.0047, D = 6.56 mT, E = 0.49 mT).



Figure S4. ESR spectrum of compound 5 (2-MeTHF, 130 K): (a) experimental; (b) simulated (g = 2.0055, D = 7.29 mT, E = 0.46 mT).



Figure S5. ESR spectrum of compound 6 (2-MeTHF, 130 K): (a) experimental; (b) simulated (g = 2.0055, D = 7.04 mT, E = 0.47 mT).











Figure S8. IR spectrum of compound 3.



Figure S9. IR spectrum of compound 4.



Figure S10. IR spectrum of compound 5.



Figure S11. IR spectrum of compound 6.



Figure S12. IR spectrum of compound 7.

#### General Procedure for Catalytic Hydroboration of Heteroallenes

#### **General Procedures**

All manipulations were performed under a dinitrogen atmosphere using standard glovebox and Schlenk techniques. NMR spectra were recorded on Bruker NMR spectrometers at 400 MHz (<sup>1</sup>H) and 300 MHz (<sup>1</sup>H) and 128.36 MHz (<sup>11</sup>B). Multiplicities are reported as singlet (s), doublet (d), triplet (t), and multiplet (m). Chemical shifts are reported in ppm. Benzene-d6 ( $C_6D_6$ ) was dried over Na/ benzophenone and distilled.

#### General Procedure for Trihydroboration of Isocyanates.

In a NMR tube, 13.0 mg (5 mol%) of catalyst **1**, 96 mg (3.0 equiv., 0.75 mmol) of HBpin was added, followed by 0.25 mmol (1.0 equiv.) of Isocyanates and C<sub>6</sub>D<sub>6</sub> (0,5 ml). The NMR tube was sealed. This mixture was then transferred to an oil bath at 100 °C for 24-48 h. The <sup>1</sup>H NMR spectrum confirms the appearance of a new NCH<sub>3</sub> peak of N-boryl methylamines. (Bpin)<sub>2</sub>O is found as a side-product in all substrates: <sup>1</sup>H NMR  $\delta$  0.98 ppm; <sup>11</sup>B NMR  $\delta$  21.68 ppm.

### Analytical data of Trihydroboration Products of Isocyanates.



NMR yield 75%.

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>): δ 7.42 (d, 2H, Ph), 7.17 (t, 2H, Ph), 6.83 (t, 1H, Ph), 2.97 (s, 3H, CH<sub>3</sub>), 1.05 (s, 12H, Bpin). <sup>11</sup>B NMR (128 MHz, C<sub>6</sub>D<sub>6</sub>): 24.59.



NMR yield 71%.

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>): δ 3.25 (t, 1H, Cy), 2.59 (s, 3H, CH<sub>3</sub>), 1.66-1.54 (m, 4H, Cy), 1.48-1.37 (m, 3H, Cy), 1.20-1.11 (m, 3H, Cy), 1.09 (s, 12H, Bpin). <sup>11</sup>B NMR (128 MHz,

C<sub>6</sub>D<sub>6</sub>): 24.33.



NMR yield 49%.

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>): δ 7.31 (s, 2H, 3,6-ClPh), 6.84 (s, 2H, 3,6-ClPh), 2.62 (s, 3H, CH<sub>3</sub>), 0.96 (s, 12H, Bpin). <sup>11</sup>B NMR (128 MHz, C<sub>6</sub>D<sub>6</sub>): 24.45.

#### General Procedure for Catalytic Monohydroboration of Carbodiimide.

In a NMR tube, 13.0 mg (5 mol%) of catalyst **1**, 32 mg (1.0 equiv., 0.25 mmol) of HBpin was added, followed by 0.25 mmol (1.0 equiv.) of Carbodiimides and  $C_6D_6$  (0,5 ml). The NMR tube was sealed. This mixture was then transferred to an oil bath at 100 °C for 24-48 h. The <sup>1</sup>H NMR spectrum confirms the appearance of a new NC*H*N peak of N-boryl formamidines.

#### Analytical data of Monohydroboration Products of Carbodiimides.



NMR yield 73%.

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>): δ 8.20 (s, 1H, CH), 4.92 (sept, 1H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.27 (sept, 1H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.40 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.15 (d, 6H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.00 (s, 12H, Bpin). <sup>11</sup>B NMR (128 MHz, C<sub>6</sub>D<sub>6</sub>): 25.25.

NMR yield 70%.

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>): δ 8.27 (s, 1H, CH), 4.60-4.49 (m, 1H, Cy), 3.00-2.89 (m, 1H, Cy), 2.18-2.03 (m, 2H, Cy), 1.91-1.84 (m, 2H, Cy), 1.73-1.62 (m, 6H, Cy), 1.51-1.42 (m, 2H, Cy), 1.33-1.05 (m, 8H, Cy), 1.02 (s, 12H, Bpin). <sup>11</sup>B NMR (128 MHz, C<sub>6</sub>D<sub>6</sub>): 25.33.



NMR yield 45%.

<sup>1</sup>H NMR (400 MHz, C<sub>6</sub>D<sub>6</sub>): δ 8.28 (s, 1H, CH), 7.17 (s, 3H, Ph), 7.09 (s, 3H, Ph), 3.32 (sept, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.24 (sept, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.40-1.32 (m, 12H, CH(CH<sub>3</sub>)<sub>2</sub>), 1.16 (d, 12H, CH(CH<sub>3</sub>)<sub>2</sub>), 0.95 (s, 12H, Bpin).

<sup>11</sup>B NMR (128 MHz, C<sub>6</sub>D<sub>6</sub>): 25.28.



Figure S13. <sup>1</sup>H NMR spectrum of phenylisocyanate with 3 equiv. of HBpin in the absence of catalyst (C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S14. Spectrum of evolution of the reaction mixture (PhNCO + 3HBpin) over time (Cat 1, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S15. <sup>1</sup>H NMR spectrum of compound PhN(Me)Bpin (Cat 1, C<sub>6</sub>D<sub>6</sub>, 400 MHz, 21 °C).





Figure S17. Spectrum of evolution of the reaction mixture (CyNCO + 3HBpin) over time (Cat 1, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S19. <sup>11</sup>B NMR spectrum of compound CyN(Me)Bpin (Cat 1, 128 MHz, C<sub>6</sub>D<sub>6</sub>, 21 °C)



Figure S20. Spectrum of evolution of the reaction mixture (3,5-Cl<sub>2</sub>PhNCO + 3HBpin) over time (Cat 1, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S21. <sup>1</sup>H NMR spectrum of compound 3,6-Cl<sub>2</sub>PhN(Me)Bpin (Cat 1, C<sub>6</sub>D<sub>6</sub>, 400 MHz, 21 °C).





Figure S23. Spectrum of evolution of the reaction mixture (*i*PrNCN*i*Pr + HBpin) over time (Cat 1, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S24. <sup>1</sup>H NMR spectrum of compound *i*PrNC(H)N(Bpin)*i*Pr (Cat 1, C<sub>6</sub>D<sub>6</sub>, 400 MHz, 21 °C).



Figure S25. <sup>11</sup>B NMR spectrum of compound *i*PrNC(H)N(Bpin)*i*Pr (Cat 1, 128 MHz, C<sub>6</sub>D<sub>6</sub>, 21 °C)



Figure S26. Spectrum of evolution of the reaction mixture (CyNCNCy + HBpin) over time (Cat 1, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S27. <sup>1</sup>H NMR spectrum of compound CyNC(H)N(Bpin)Cy (Cat 1, C<sub>6</sub>D<sub>6</sub>, 400 MHz, 21 °C).



Figure S28. <sup>11</sup>B NMR spectrum of compound CyNC(H)N(Bpin)Cy (Cat 1, 128 MHz, C<sub>6</sub>D<sub>6</sub>, 21 °C)



Figure S29. Spectrum of evolution of the reaction mixture (DppNCNDpp + HBpin) over time (Cat 1, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S30. <sup>1</sup>H NMR spectrum of compound DppNC(H)N(Bpin)Dpp (Cat 1, C<sub>6</sub>D<sub>6</sub>, 400 MHz, 21 °C).



Figure S31. <sup>11</sup>B NMR spectrum of compound DppNC(H)N(Bpin)Dpp (Cat 1, 128 MHz, C<sub>6</sub>D<sub>6</sub>, 21 °C)



Figure S32. Spectrum of evolution of the reaction mixture (PhNCO + 3HBpin) over time (Cat 5, C<sub>6</sub>D<sub>6</sub>, 300 MHz).



Figure S33. <sup>1</sup>H NMR spectrum of compound PhN(Me)Bpin (Cat 5, C<sub>6</sub>D<sub>6</sub>, 400 MHz, 21 °C).



Figure S34. <sup>11</sup>B NMR spectrum of compound PhN(Me)Bpin (Cat 5, 128 MHz, C<sub>6</sub>D<sub>6</sub>, 21 °C)