Supporting Information

Bimetallic sulfide/N-doped carbon composites derived from Prussian blue analogues/cellulose nanofibers (PBA/CNFs) film toward enhanced oxygen evolution reaction

Zhengping Li^{a,*}, Feiyang Chen^a, Chunlong Li^a, Zhiliang Zhang^a, Fangong Kong^a, Xipeng Pu^b and Qifang Lu^c

^a State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China

^b School of Materials Science and Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252000, People's Republic of China

^c Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics of Shandong Province, School of Material Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China

* Email: knje@163.com

Fig. S1. a) XRD result, b) SEM and c) TEM image of NiFe-PBA/CNFs film, d) histograms of size distribution of NiFe-PBA NPs in NiFe-PBA/CNFs film.

Fig. S2. XRD result of NiFe-alloy/NC composite.

Table S1 Elemental composition of Ni and Fe determined by ICP-OES

Samples	Ni content (mg/L)	Fe content (mg/L)	Ni/Fe molar ratio
Fe_0 ₄ Ni_0 ₆ S ₂ /NC-DF	9.069	6.092	1.416
$Fe_04Ni0.6S_2/NC-DA$	13.90	9.009	1.468
$Fe0.4Ni0.6S/NC NPs$	22.72	15.36	1.407

Fig. S3. a) XRD result, b) SEM and c) TEM image of $Fe_{0.4}Ni_{0.6}S₂/NC-DA$.

Fig. S4. a) XRD result, b) SEM and c) TEM image of $Fe_{0.4}Ni_{0.6}S/NC NPs$.

Fig. S5. SEM image of a) NiFe-PBA/CNFs film and b) NiFe-PBA/CNFs aggregates.

Fig. S6. a) N₂ adsorption–desorption isotherm and b) the pore size distribution curve of $Fe_{0.4}Ni_{0.6}S₂/NC-DF$, $Fe_{0.4}Ni_{0.6}S₂/NC-DA$ and $Fe_{0.4}Ni_{0.6}S/NC$ NPs.

$R_s(\Omega)$	$R_{ct}(\Omega)$
9.68	18.62
3.27	271.4
7.33	63.86
11.78	42.93

Table S2 Calculated values of OER electrocatalysts based on the fitted equivalent circuit in 1M KOH.

Fig. S7. TOF values of $Fe_{0.4}Ni_{0.6}S_2/NC-DF$, $Fe_{0.4}Ni_{0.6}S_2/NC-DA$ and $Fe_{0.4}Ni_{0.6}S/NC$ NPs at different potentials.

Fig. S8. CV curves of a) $Fe_{0.4}Ni_{0.6}S_2/NC-DF$, b) $Fe_{0.4}Ni_{0.6}S_2/NC-DA$, and c) $Fe_{0.4}Ni_{0.6}S/NC$ NPs in the potential range of -0.1-0 V (vs. Hg/HgO) at scanning rate of 20, 40, 60, 80, and 100 mV s⁻¹, and d) linear fitting curve of $\Delta j=1/2$ (ja-jc) at different scanning speeds at -0.05 V (vs. Hg/HgO)

Fig. S9. The specific activity of $Fe_{0.4}Ni_{0.6}S_2/NC-DF$, $Fe_{0.4}Ni_{0.6}S_2/NC-DA$ and Fe_{0.4}Ni_{0.6}S/NC NPs normalized by ECSA.

Fig. S10 a) TEM and b) HRTEM image of $Fe_{0.4}Ni_{0.6}S_2/NC-DF$ after stability.

Table S3 Comparison of OER performances over nickle sulfide-based electrocatalysts in 1M KOH electrolyte recently reported in the literatures. (η_{OER} are the overpotentials of OER at specific current density)

References

- 1 J Tian, X. Xing, Y Sun, X. Zhang, Z Li, M Yang and G Zhang, Strongly coupled Fedoped NiS2/MoS² composite for high-efficiency water splitting, *Chem. Commun*., 2022, **58**, 557-560.
- 2 X Huang, L Yu, X Wang and L Feng, Insights into Fe-doping effect induced heterostructure formation for oxygen evolution reaction, *Chem. Commun.*, 2023, **59**, 12294-12297.
- 3 Q. Li, D Wang, C. Han, X. Ma, Q Lu, Z Xing and X Yang, Construction of amorphous interface in an interwoven N iS/ N iS₂ structure for enhanced overall water splitting, *J. Mater. Chem. A*, 2018, **6**, 8233-8237.
- 4 H. Wang, J Tang, Y Li, H. Chu, Y Ge, R Baines, P. Dong, P Ajayan, J Shen and M Ye, Template-free solvothermal preparation of ternary FeNi₂S₄ hollow balloons as RuO2-like efficient electrocatalysts for the oxygen evolution reaction with superior stability, *J. Mater. Chem. A*, 2018, **6**, 19417-19424.
- 5 J Lin, P Wang, H Wang, C. Li, X Si, J Qi, J. Cao, Z Zhong, W Fei and J Feng, Defectrich heterogeneous MoS₂/NiS₂ nanosheets electrocatalysts for efficient overall water splitting, *Adv. Sci.*, 2019, **6**, 1900246.
- 6 X Zheng, X Han, Y Zhang, J Wang, C. Zhong, Y Deng and W Hu, Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting, *Nanoscale*, 2019, **11**, 5646-5654.
- 7 J Wang, W Liu, X Li, T yang and Z Liu, Strong hydrophilicity N_1S_2/Fe_7S_8 heterojunctions encapsulated in N-doped carbon nanotubes for enhanced oxygen evolution reaction, *Chem. Commun*., 2020, **56**, 1489-1492.
- 8 M Zhong, N. Song, C Li, C. Wang, W. Chen and X Lu, Controllable growth of Fe-doped NiS² on NiFe-carbon nanofibers for boosting oxygen evolution reaction, *J. Colloid Interface Sci.*, 2022, **614**, 556-565.
- 9 D Zhang, H Mou, L. Chen, G. Xing, D Wang and C Song, Surface/interface engineering N-doped carbon/NiS₂ nanosheets for efficient electrocatalytic H₂O splitting, *Nanoscale*, 2020, **12**, 3370-3376.
- 10 L. Wu, J Li, C. Shi, Y Li, H Mi, L Deng, Q Zhang, C He and X Ren, Rational design of the FeS_2/NiS_2 heterojunction interface structure to enhance the oxygen electrocatalytic performance for zinc-air batteries, *J. Mater. Chem. A*, 2022, **10**, 16627-16638.