ARTICLE

Supplementary Information

The band gap of the host is crucial to the luminescent properties of the phosphor. Fig. SIa displays the reflectance spectra of $Y_{0.95}LuGdAl_{5-z}Ga_zO_{12}$:0.05Ce³⁺, (z=1-4, sintered at 1600 °C for 6 h) ranging from 300 to 700 nm. The band gap energy (*E*_g) of $Y_{0.95}LuGdAl_{5-z}Ga_zO_{12}$:0.05Ce³⁺ was determined by extrapolating the Kubelka-Munk absorption function:

$$F(R) = (1 - R)^{2} / 2R$$
(1)
[F(R)hv]² = C (hv - E_q) (2)

where *R* represents the diffuse reflection coefficient; hv denotes the photon energy, and *C* is the proportionality constant. As depicted in the inset of Fig. Slb, the extrapolating of the linear portion of the $[F(R)hv]^2$ - hv curve yields an E_g value of 4.63 eV for the Y_{0.95}LuGdAl₄GaO₁₂:0.05Ce³⁺ (z=1), 4.25 eV for Y_{0.95}LuGdAlGa₄O₁₂:0.05Ce³⁺ (z = 4).

Fig. SI (a) Diffuse reflection spectra of $Y_{0.95}LuGdAl_{5-2}Ga_zO_{12}:0.05Ce^{3+}$ (z=1-4). (b) The experimental E_g of $Y_{0.95}LuGdAl_4GaO_{12}:0.05Ce^{3+}$ (z=1) and $Y_{0.95}LuGdAlGa_4O_{12}:0.05Ce^{3+}$ (z = 4).