ELECTRONIC SUPPORTING INFORMATION

Luminescent Er³⁺ Based Single Molecule Magnets with

Fluorinated Alkoxide or Aryloxide Ligands

Alexander A. Selikhov,^{a,b} Gautier Félix,^c Dmitry M. Lyubov,^{a,b} Yulia V. Nelyubina,^{a,} Anton V. Cherkasov,^b Saad Sene,^c Ilya V. Taydakov,^d Mikhail T. Metlin,^a Andrey A. Tyutyunov,^a Yannick Guari,^c Joulia Larionova^{*c} and Alexander A. Trifonov^{*a,b}

^a A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova str., 119334, Moscow, Russia. E-mail: trif@iomc.ras.ru

^b Institute of Organometallic Chemistry of Russian Academy of Sciences, 49 Tropinina str., GSP-445, 630950, Nizhny Novgorod, Russia. E-mail: trif@iomc.ras.ru

^c ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France. E-mail: joulia.larionova@umontpellier.fr

^dN. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospect, 47, 119991, Moscow, Russia

TABLE OF CONTENTS

S2

Figure S16. Frequency dependence of the in-phase, χ' , (a) and out-of-phase, χ'' (c) components
of the ac susceptibility for 6 under applied magnetic field of 1000 Oe. The red lines are the result
of the Cole-Cole fitting. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for 6
obtained under 1000 Oe. The solid lines correspond to the best fit obtained with a generalized
Debye model. (d) Temperature dependence of the two relaxation times for 6 (1000 Oe) and the
corresponding fit with eq. (2) (red solid line)19
Figure S17. IR spectrum of [4- <i>t</i> BuC ₆ H ₂ (2,6-benzhydryl)O] ₃ Er(THF) 120
Figure S18. IR spectrum of [(C ₆ F ₅) ₃ CO] ₃ Er(Me ₃ SiOH) 220
Figure S19. IR spectrum of [(C ₆ F ₅) ₃ CO] ₃ Er((Me ₃ Si) ₂ NH) 321
Figure S20. IR spectrum of [(C ₆ F ₅) ₃ CO] ₃ Er(C ₆ H ₅ CH ₃) 421
Figure S21. IR spectrum of [(C ₆ F ₅) ₃ CO] ₃ Er(<i>o</i> -Me ₂ NC ₆ H ₄ CH ₃) 522
Figure S22. IR spectrum of {[Ph(F ₃ C) ₂ CO] ₂ Er(μ-OC(CF ₃) ₂ Ph]} ₂ 622

Figure S1. Perspective view of the crystal packing for **1** along the crystallographic axis *b*. Color code: light green Er; yellow F; red O; grey C. Hydrogen atoms and crystallized solvent molecules have been omitted for clarity.

Figure S2. Perspective view of the crystal packing for **2** along the crystallographic axis *c*. Color code: light green Er; yellow F; red O; grey C. Hydrogen atoms and crystallized solvent molecules have been omitted for clarity.

Figure S3. Perspective view of the crystal packing for **3** along the crystallographic axis *a*. Color code: light green Er; yellow F; red O; grey C. Hydrogen atoms and crystallized solvent molecules have been omitted for clarity.

Figure S4. Perspective view of the crystal packing for **4** along the crystallographic axis *c*. Color code: light green Er; yellow F; red O; grey C. Hydrogen atoms and crystallized solvent molecules have been omitted for clarity.

Figure S5. Perspective view of the crystal packing for **5** along the crystallographic axis *a*. Color code: light green Er; yellow F; red O; grey C. Hydrogen atoms and crystallized solvent molecules have been omitted for clarity.

Figure S6. Perspective view of the crystal packing for **6** along the crystallographic axis *a*. Color code: light green Er; yellow F; red O; grey C. Hydrogen atoms and crystallized solvent molecules have been omitted for clarity.

Figure S7. Frequency dependence of $\chi'(a)$ and $\chi''(c)$ for **2** at 1.8 K performed under various applied dc fields. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **2** at 1.8 K under various dc field. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Field dependence of the relaxation time curve for **2**. The red line represents the fit using equation (1).

Figure S8. Frequency dependence of the in-phase, χ' , (a) and out-of-phase, χ'' (c) components of the ac susceptibility for **2** under applied magnetic field of 1000 Oe. The red lines are the result of the Cole-Cole fitting. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **2** obtained under 1000 Oe. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Temperature dependence of the relaxation time for **2** (1000 Oe) and the corresponding fit with eq. (2) (red solid line).

Figure S9. Frequency dependence of $\chi'(a)$ and $\chi''(c)$ for **3** at 1.8 K performed under various applied dc fields. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **3** at 1.8 K under various dc field. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Field dependence of the relaxation time curve for **3** for the lowest relaxation time. The red line represents the fit using equation (1).

Figure S10. Frequency dependence of the in-phase, χ' , (a) and out-of-phase, χ'' (c) components of the ac susceptibility for **3** under applied magnetic field of 1200 Oe. The red lines are the result of the Cole-Cole fitting. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **3** obtained under 1000 Oe. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Temperature dependence of the two relaxation times for **3** (1200 Oe) and the corresponding fit with eq. (2) (red solid line).

Figure S11. Frequency dependence of $\chi'(a)$ and $\chi''(c)$ for 4 at 1.8 K performed under various applied dc fields. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for 4 at 1.8 K under various dc field. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Field dependence of the relaxation time curve for 4 for the lowest relaxation time. The red line represents the fit using equation (1).

Figure S12. Frequency dependence of the in-phase, χ' , (a) and out-of-phase, χ'' (c) components of the ac susceptibility for 4 under applied magnetic field of 1000 Oe. The red lines are the result of the Cole-Cole fitting. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for 4 obtained under 1000 Oe. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Temperature dependence of the two relaxation times for 4 (1000 Oe) and the corresponding fit with eq. (2) (red solid line).

Figure S13. Frequency dependence of $\chi'(a)$ and $\chi''(c)$ for **5** at 1.8 K performed under various applied dc fields. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **5** at 1.8 K under various dc field. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Field dependence of the relaxation time curve for **5** for the lowest relaxation time. The red line represents the fit using equation (1).

Figure S14. Frequency dependence of the in-phase, χ' , (a) and out-of-phase, χ'' (c) components of the ac susceptibility for **5** under applied magnetic field of 1000 Oe. The red lines are the result of the Cole-Cole fitting. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **5** obtained under 1000 Oe. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Temperature dependence of the two relaxation times for **5** (1000 Oe) and the corresponding fit with eq. (2) (red solid line).

Figure S15. Frequency dependence of $\chi'(a)$ and $\chi''(c)$ for **6** at 1.8 K performed under various applied dc fields. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **6** at 1.8 K under various dc field. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Field dependence of the relaxation time curve for **6** for the lowest relaxation time. The red line represents the fit using equation (1).

Figure S16. Frequency dependence of the in-phase, χ' , (a) and out-of-phase, χ'' (c) components of the ac susceptibility for **6** under applied magnetic field of 1000 Oe. The red lines are the result of the Cole-Cole fitting. (b) Cole-Cole plots obtained using the frequency dependence of χ'' for **6** obtained under 1000 Oe. The solid lines correspond to the best fit obtained with a generalized Debye model. (d) Temperature dependence of the two relaxation times for **6** (1000 Oe) and the corresponding fit with eq. (2) (red solid line).

Figure S17. IR spectrum of $[4-tBuC_6H_2(2,6-benzhydryl)O]_3Er(THF)$ 1.

Figure S18. IR spectrum of $[(C_6F_5)_3CO]_3Er(Me_3SiOH) 2$.

Figure S20. IR spectrum of $[(C_6F_5)_3CO]_3Er(C_6H_5CH_3)$ 4.

Figure S21. IR spectrum of [(C₆F₅)₃CO]₃Er(*o*-Me₂NC₆H₄CH₃) 5.

Figure S22. IR spectrum of $\{[Ph(F_3C)_2CO]_2Er(\mu-OC(CF_3)_2Ph]\}_2$ 6.

Figure S23. Luminescence kinetics of complex 4 in solid phase at temperatures of 77 and 300 K under optical excitation through ligand environment (360 nm). Recording wavelength is 1535 nm.

Figure S24. Experimental luminescence emission spectra for crystalline complexes **2** at 77 K (a) and 300 K (b). The blue and green curves represent the experimental data and the optimized fit. The black and red Lorentzian functions represent the radiative relaxation from the first and second ${}^{4}I_{13/2}$ states, respectively. c) Schematic representation of the energy levels for sample **2**, extracted from the fitting process.

Figure S25. Experimental luminescence emission spectra for crystalline complexes **3** at 77 K (a) and 300 K (b). The blue and green curves represent the experimental data and the optimized fit. The black and red Lorentzian functions represent the radiative relaxation from the first and second ${}^{4}I_{13/2}$ states, respectively. c) Schematic representation of the energy levels for sample **3**, extracted from the fitting process.

Figure S26. Experimental luminescence emission spectra for crystalline complexes **4** at 77 K (a) and 300 K (b). The blue and green curves represent the experimental data and the optimized fit. The black and red Lorentzian functions represent the radiative relaxation from the first and second ${}^{4}I_{13/2}$ states, respectively. c) Schematic representation of the energy levels for sample **4**, extracted from the fitting process.

Figure S27. Experimental luminescence emission spectra for crystalline complexes **5** at 77 K (a) and 300 K (b). The blue and green curves represent the experimental data and the optimized fit. The black and red Lorentzian functions represent the radiative relaxation from the first and second ${}^{4}I_{13/2}$ states, respectively. c) Schematic representation of the energy levels for sample **5**, extracted from the fitting process.

Figure S28. Experimental luminescence emission spectra for crystalline complexes **6** at 77 K (a) and 300 K (b). The blue and green curves represent the experimental data and the optimized fit. The black and red Lorentzian functions represent the radiative relaxation from the first and second ${}^{4}I_{13/2}$ states, respectively. c) Schematic representation of the energy levels for sample **6**, extracted from the fitting process.

Compounds	Magnetism	Luminescence	Ref.
[Er(thd) ₃ (bath)] 8-coordinated Er ³⁺ 8-coordinated Er ³⁺	Field induced SMM, two relaxations: U_{eff} = 15.6 and 22.4 K. Field induced SMMs,	RT NIR emission, $\lambda_{ex}=337$ nm (antenna effect), $\lambda_{em}=1532$ nm, associated with the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition RT NIR emission, $\lambda_{ex}=405$ nm (antenna effect), $\lambda_{ex}=1532$ nm	2
$[Er(h)_3(5NO_2phen)]$ [Er(h)_3(bath)]	$U_{eff} = 12.97 \text{ K}$ $U_{eff} = 22.81 \text{ K}$	(antenna effect), $\kappa_{em} \sim 1532$ min, associated with the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition	
[Er(notpH ₄)(H ₂ O)]ClO ₄ ·3H ₂ O 2D layered coordination polymer	Field induced SMM, $U_{eff}=24 \text{ cm}^{-1}$ Correlation with luminescence thanks to the presence of hot bands (emission from ${}^{4}I_{13/2}$ multiplet) \rightarrow energy diagram of the Stark-sub- levels	RT NIR emission, $\lambda_{ex} = 1064$ nm (direct Er^{3+} excitation), $\lambda_{em} \sim 1532$ nm. The luminescence permitted to establish the energy diagram and determine the energy gap between the ground and first excited state of the ⁴ I _{15/2} CF splitting of 31.2 cm ⁻¹ , close to the U _{eff} of 24.2 cm ⁻¹ .	3
[Er(dbm) ₃ (bipy)] 8-coordinated Er ³⁺	Field induced SMM, U _{eff} =19.8 K.	RT NIR emission, λ_{ex} =380 nm (antenna effect), λ_{em} =1532 nm, associated to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition; life time 1.1 µs	4
$[ErL^{1}_{3}] \cdot CH_{3}OH$ $[ErL^{1}_{2}(tmh)(CH_{3}OH)] \cdot Solv$ $[ErL^{1}_{2}(tta)(CH_{3}OH)] \cdot CH_{3}OH$ 8-coordinated Er ³⁺	Field induced SMM, U_{eff} =16.0 K U_{eff} =30.4 K U_{eff} =25.8 K.	RT NIR emission, $\lambda_{ex}=355$ nm (antenna effect), $\lambda_{em}=1530$ nm, associated to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition; life time 2.37 µs.	5
[Er(depma) ₂ (H ₂ O) ₆]Cl ₃)]·Solv	Field induced SMM, U _{eff} =9.8 K	λ_{ex} =330 nm, RT visible emission from anthracene λ_{em} =450 nm.	6
(nBu ₄ N) ₂ [Er(NO ₃) ₅] 10-coordinated Er ³⁺	Field induced SMM, U _{eff} =22.3 K	Very low RT NIR emission, at 1550 nm associated to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition	7
8-coordinated Er ³⁺ [Er(tpm) ₃ (bipy)] [Er(tfa) ₃ (bipy)]	Genuine SMM $U_{eff} = 21$ K (zero DC applied field) Field induced SMM $U_{eff} = 15$ K	RT NIR emission, λ_{ex} =337 or 532 nm (antenna effect), λ_{em} =1532 nm, associated to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition; life time 1.24 µs	8
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Field induced SMM, U _{eff} =13.6 K U _{eff} =11.8 K	Emission at 584 nm from Ir unit (λ_{ex} =375 nm) and at 1538 nm (λ_{ex} = 500 nm); life time 1.4 µs (λ_{ex} =500 nm)	9
3D neutral polymorphic frameworks [Er ₂ (trz ₂ An) ₃ (H ₂ O) ₄] _n ·H ₂ O	Field induced SMM, U _{eff} =42 K	NIR emission at 77K and RT, λ_{ex} =355 nm (antenna effect), emission associated to the Er ³⁺	10

Table S1: Representative examples of Er^{3+} luminescent SMMs.

		${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition; life time of 55 ns and 86 ns	
$(Et_3NH)[Er(L^2)_2] \cdot 1.5H_2O$ [Zn(µ-L ³)(µ-NO ₃)Er(NO ₃) ₂]	Field induced SMM, $U_{eff}=8$ K, $U_{eff}=15$ cm ⁻¹	NIR emission at RT, λ_{ex} =380- 649 nm (antenna effect), λ_{em} =1550 nm associated to the ⁴ I _{13/2} \rightarrow ⁴ I _{15/2} transition.	11
$[Zn(\mu-L^3)(\mu-OAc)Er(NO_3)_2]$	Field induced SMM, U _{eff} =8 cm ⁻¹	NIR emission at RT, λ_{ex} =355 nm, λ_{em} =1530 nm associated to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition; life time 2.77 µs, 11.82 µs	12
[Er(hfac) ₃ (tempo) ₂]	Field induced SMM, $U_{eff}=12 \text{ cm}^{-1}$	NIR emission at 4.2K, λ_{em} associated to the ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transition; life time 11.82 µs.	13

thd = 2,2,6,6-tetramethyl-3,5-heptanedionate, bath = bathophenanthroline; h = 2,4-hexanedionate; bipy = 2,2-bipyridine; 5NO2phen = 5-nitro-1,10-phenanthroline; bath = bathophenanthroline; notpH₄²⁻ = = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonate); dbm = dibenzoylmethanate; HL¹=2-(tetrazol-5-yl)-1,10-phenanthroline; 2,2,6,6-tetramethylheptanoate; tmh = tta = thenoyltrifluoroacetonate; ppy = 2-phenylpyridine; dcbpy = 2,2'-bipyridine-4,4'-dicarboxylate; depma 4,4,4-trifluoro-1-(2-furyl)-1,3-butanedione); SYML=(N,N0-bis(1-naphthaldiamine)-Ophenylenediamine); H_2 trz₂An = 3,6-N-ditriazolyl-2,5-dihydroxy-1,4-benzoquinone. L² = N,N'-bis(3nitro-salicylaldehyde)ethylenediamine dianion); $H_2L^3 = N, N', N''$ -trimethyl-N, N''-bis(2-hydroxy-3methoxy-5-methylbenzyl)diethylenetriamine ; TEMPO = (2,2,6,6-tetramethylpiperidin-1-oxyl) radical.

	1	2	3	4	5	6
Formula	C122.5H119ErO4	C60H10ErF45O4Si	C63H19ErF45NO3Si2	$C_{64}H_8ErF_{45}O_3$	C66H13ErF45NO3	$C_{54}H_{30}Er_2F_{36}O_6$
М	1822.43	1845.03	1916.23	1846.96	1890.03	1793.30
<i>Т</i> , К	100.0(2)	100.0(2)	100.0(2)	100.0(2)	100.0(2)	100.0(2)
Crystal system	Triclinic	Trigonal	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	R-3	P-1	P-1	P-1	P-1
<i>a</i> , Å	13.02470(10)	17.2887(3)	14.7886(4)	13.5916(6)	15.0250(4)	11.2800(2)
<i>b</i> , Å	14.11930(10)	17.2887(3)	15.4929(4)	15.0450(5)	15.1826(4)	13.6848(3)
<i>c</i> , Å	27.7895(2)	35.2684(5)	18.0735(4)	18.6919(8)	15.5060(4)	20.1615(5)
<i>α</i> , deg	84.4770(10)	90	94.9370(10)	73.966(3)	84.4720(10)	100.9240(10)
β , deg	83.5680(10)	90	112.0700(10)	79.560(3)	83.219(2)	104.5260(10)
γ, deg	72.6830(10)	120	96.0260(10)	64.614(2)	83.909(2)	94.4460(10)
<i>V</i> , Å ³	4837.46(7)	9129.4(3)	3780.78(17)	3310.1(2)	3480.03(16)	2932.43(11)
Ζ	2	6	2	2	2	2
dcalc, g/cm3	1.251	2.014	1.683	1.853	1.804	2.031
μ , mm ⁻¹	0.923	1.587	1.296	1.441	1.374	3.007
<i>F000</i>	1908	5334	1858	1778	1826	1724
Crystal dimensions, mm	0.62×0.50×0.34	0.15×0.10×0.10	0.15×0.10×0.05	0.25×0.25×0.02	0.25×0.20×0.03	0.25×0.20×0.03
heta range for data	1.74-30.03	2.36-27.00	1.86-27.00	1.82-26.00	1.80-27.00	1.88-27.00
collection, deg						
Completeness, %	99.9	99.9	99.7	96.5	99.7	99.8
_	$-18 \le h \le 18$	$-22 \le h \le 22$	$-18 \le h \le 18$	$-10 \leq h \leq 16$	$-19 \leq h \leq 19$	$-14 \leq h \leq 14$
HKL indices	$-19 \le k \le 19$	$-18 \le k \le 22$	$-17 \le k \le 19$	$-18 \le k \le 18$	$-19 \le k \le 19$	$-17 \le k \le 17$
	$-39 \le l \le 39$	$-45 \le l \le 45$	-23 ≤ <i>l</i> ≤ 23	$-22 \le l \le 23$	$-18 \le l \le 19$	$-25 \le l \le 22$
Reflns. collected	170147	34659	42913	23913	37911	32777
Reflns. unique ($l > 2\sigma(l)$)	26368	4092	12863	6906	12837	11020
Rint	0.0468	0.0320	0.0597	0.0843	0.0385	0.0355

 Table S2: Crystal data, data collection and structure refinement details for 1-6.

Data / restraints /	28285 / 1109 /	4433 / 13 / 346	16441 / 0 / 1042	12557 / 30 / 1021	15149 / 56 / 1058	12801 / 0 / 883
parameters	1199					
$S(F^2)$	1.044	1.079	0.996	0.958	1.020	1.061
$R_1 / wR_2 (I > 2\sigma(I))$	0.0320 / 0.0724	0.0324 / 0.0899	0.0477 / 0.1051	0.0725 / 0.1473	0.0427 / 0.0995	0.0304 / 0.0678
R_1 / wR_2 (all data)	0.0360 / 0.0740	0.0363 / 0.0935	0.0663 / 0.1125	0.1312 / 0.1673	0.0528 / 0.1044	0.0382 / 0.0710
Largest diff. peak and	0.86 / -1.31	0.94 / -1.33	1.49 / -0.86	1.42 / -1.35	1.34 / -0.75	1.40 / -1.10
hole, e/ų						

Complex	$D(s^{-1}.Oe^{-4}.K^{-1})$	$B_1 (s^{-1})$	$B_2 (Oe^{-2})$	C (s ⁻¹)
		B ₀ (s ⁻		
1	$(1.6 \pm 0.1) \ 10^{-11}$	$10^{(4.2 \pm 0.9)}$	$10^{(-2.9\pm0.9)}$	300 ± 7
2	$(5.4 \pm 1.0) \ 10^{-11}$	$10^{(4.1 \pm 1.0)}$	$10^{(-3.0\pm1.5)}$	150 ± 17
3	$(2.7 \pm 0.7) \ 10^{-12}$	(6.2 ±	1.5) 10^7	174 ± 18
4	$(9.3 \pm 2.0) \ 10^{-15}$	$(2.0 \pm 0.2) \ 10^6$		4.0 ± 0.2
5	$(3.9\pm0.7)\ 10^{-11}$	$10^{(3.4\pm0.2)}$	$10^{(-4.1\pm0.3)}$	206 ± 28
6	$(7.4 \pm 2.1) \ 10^{-13}$	(4.8 ±	1.6) 10 ⁶	2.4 ± 2.1

Table S3. Main magnetic parameters utilized in Equation (1) for samples 1–6.

References

- 1 P. Martín-Ramos, M. Ramos Silva, J. T. Coutinho, L. C. J. Pereira, P. Chamorro-Posada and J. Martín-Gil, *European Journal of Inorganic Chemistry*, 2014, **2014**, 511–517.
- 2 M. R. Silva, P. Martín-Ramos, J. T. Coutinho, L. C. J. Pereira and J. Martín-Gil, *Dalton Trans.*, 2014, 43, 6752–6761.
- 3 M. Ren, S.-S. Bao, R. A. S. Ferreira, L.-M. Zheng and L. D. Carlos, *Chem. Commun.*, 2014, **50**, 7621–7624.
- 4 P. Martín-Ramos, J. T. Coutinho, M. R. Silva, L. C. J. Pereira, F. Lahoz, P. S. P. da Silva, V. Lavín and J. Martín-Gil, *New J. Chem.*, 2015, **39**, 1703–1713.
- 5 J.-R. Jiménez, I. F. Díaz-Ortega, E. Ruiz, D. Aravena, S. J. A. Pope, E. Colacio and J. M. Herrera, *Chemistry – A European Journal*, 2016, 22, 14548–14559.
- 6 Q. Zou, X.-D. Huang, J.-C. Liu, S.-S. Bao and L.-M. Zheng, Dalton Trans., 2019, 48, 2735–2740.
- 7 L. Chen, J. Zhou, A. Yuan and Y. Song, *Dalton Trans.*, 2017, 46, 15812–15818.
- 8 M. R. Silva, P. Martín-Ramos, J. T. Coutinho, L. C. J. Pereira, V. Lavín, I. R. Martín, P. S. P. Silva and J. Martín-Gil, *Dalton Trans.*, 2014, 44, 1264–1272.
- 9 K. Fan, S.-S. Bao, R. Huo, X.-D. Huang, Y.-J. Liu, Z.-W. Yu, M. Kurmoo and L.-M. Zheng, *Inorg. Chem. Front.*, 2020, 7, 4580–4592.
- 10 N. Monni, J. J. Baldoví, V. García-López, M. Oggianu, E. Cadoni, F. Quochi, M. Clemente-León, M. L. Mercuri and E. Coronado, *Chem. Sci.*, 2022, **13**, 7419–7428.
- 11 M. Ren, Z.-L. Xu, S.-S. Bao, T.-T. Wang, Z.-H. Zheng, R. A. S. Ferreira, L.-M. Zheng and L. D. Carlos, *Dalton Trans.*, 2016, 45, 2974–2982.
- 12 M. A. Palacios, S. Titos-Padilla, J. Ruiz, J. M. Herrera, S. J. A. Pope, E. K. Brechin and E. Colacio, *Inorg. Chem.*, 2014, **53**, 1465–1474.
- 13 M. Karbowiak, C. Rudowicz, T. Nakamura, R. Murakami and T. Ishida, *Chemical Physics Letters*, 2016, **662**, 163–168.