Supporting information

-for-

A Possible Atmospheric Source of HNO₃: The ammonolysis reaction of *t*-N₂O₄ in the Presence of Water Monomer, Water Dimer and Sulfuric Acid

Ruxue Mu^{a,‡}, Weixin Zhou^{a,‡}, Zhaozhao Hong^a, Rui Wang^a, Quan Liu^a,

Qiang Zhang^a, Min Jiang^a, Balaganesh Muthiah^b, Tianlei Zhang^{a,*}

^a Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, P. R. China

^b Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

S. NO	Caption
62	Figure S1 The optimized geometries for the species involved in the $t-N_2O_4 + NH_3$
S3	reaction at different levels of theory
	Table S1 The energy barriers (ΔE) and unsigned error (UE) (kcal·mol ⁻¹) for the <i>t</i> -N ₂ O ₄
S4	$+$ NH ₃ \rightarrow HNO ₃ $+$ NH ₂ NO reaction at different theoretical methods with zero-point
	energy (ZPE) correction
	Table S2 Energies for the ammonolysis of $t-N_2O_4$ with zero-point correction
S5	(ZPE/(kcal·mol ⁻¹)) included at the levels of CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-
	311++G(3 <i>df</i> ,2 <i>pd</i>) and UCCSD(T)/6-311+G(3 <i>df</i> ,2 <i>p</i>)//UB3LYP/6-311+G(3 <i>df</i> ,2 <i>p</i>)
	Figure S2 Optimized geometries and binding energies of the reactant and complexes t-
S6	$N_2O_4\cdots X$ and $NH_3\cdots X$ (X = H ₂ O, (H ₂ O) ₂ , and H ₂ SO ₄) at the CCSD(T)/aug-cc-
	pVTZ//B3LYP-D3/6-311++G(3 <i>df</i> ,2 <i>pd</i>) level (bond distance in Angstroms and angles
	in degrees)
	Figure S3 The optimized geometries and the electric energies (in Hartree-Fock) of t-
S 7	$N_2O_4 \cdots NH_3 \cdots X$ (X = H ₂ O, (H ₂ O) ₂ , and H ₂ SO ₄) at the B3LYP-D3/6-311++G(3 <i>df</i> ,2 <i>pd</i>)
	level (bond distances in Angstroms and angles in degrees)
	Table S3 Zero-point energies (ZPE/(kcal·mol ⁻¹)), relative energies (ΔE and $\Delta (E +$
	ZPE)/(kcal·mol ⁻¹)), enthalpies (ΔH(298 K)/(kcal·mol ⁻¹)), entropy (S(298 K/((cal·mol ⁻¹))
S 8	¹ ·K ⁻¹)), T_1 diagnostic values and free energies ($\Delta G(298 \text{ K})/(\text{kcal·mol}^{-1})$) for the
	reactants, intermediates and transition states involved in the t-N ₂ O ₄ + NH ₃ reaction
	without and with catalyst $X (X = H_2O, (H_2O)_2, \text{ and } H_2SO_4)$
50	Figure S4 Hindrance potentials for <i>t</i> -N ₂ O ₄ , <i>t</i> -N ₂ O ₄ NH ₃ , and HNO ₃ calculated at the
	B3LYP-D3/6-311++G(3df,2pd) level
S 10	Table S4 Equilibrium constants (cm ³ ·molecule ⁻¹) for NH ₃ ····H ₂ O, NH ₃ ···(H ₂ O) ₂ , and
510	NH ₃ ···H ₂ SO ₄ within the range of 213-320 K and 0-15 km
S 11	Table S5 Concentrations (molecule cm^{-3}) of H ₂ O, (H ₂ O) ₂ , and H ₂ SO ₄ within the
511	temperature range of 280-320 K

^{*} Corresponding authors. Tel: +86-0916-2641083, Fax: +86-0916-2641083.

E-mail: ztianlei88@l63.com (T. L. Zhang).

[‡] Ruxue Mu and Weixin Zhou have contributed equally to this work.

S12	Table S6 Concentrations (molecule cm ⁻³) of H ₂ O, (H ₂ O) ₂ , and H ₂ SO ₄ at different
	altitudes in troposphere
	Table S7 The high-pressure limiting rate constants (cm ³ ·molecule ⁻¹ ·s ⁻¹) for the route
S13	from reactants to pre-reactive calculated by master equation within the altitude range
	of 0-15 km
	Table S8 Rate constants (k) (in cm ³ ·molecule ⁻¹ ·s ⁻¹) for the t -N ₂ O ₄ + NH ₃ reaction
C14	without and with catalyst $X (X = H_2O, (H_2O)_2, \text{ and } H_2SO_4)$ calculated by master
514	equation within the temperature range of 280-320 K and the pressure range of 10-760
	Torr
S15	Table S9 Calculated effective rate constants (k', s^{-1}) for the <i>t</i> -N ₂ O ₄ + NH ₃ reaction with
	catalyst $X(X = H_2O, (H_2O)_2)$, and H_2SO_4) within the temperature range of 280-320 K

Figure S1 The optimized geometries for the species involved in the t-N₂O₄ + NH₃ reaction at different levels of theory

^a and ^b respectively represent the values obtained at the B3LYP-D3/6-311++G(3df,2pd) and UB3LYP/6-311+G(3df,2p) levels of theory. (The values in parentheses were the experimental values; bond length is in angstrom and angle is in degree.)

For the geometric parameters of the reactants, pre-reactive complexes, transition states and products, the calculated bond distances and bond angles at the B3LYP-D3/6-311++G(3df,2pd) level agree well with the available experimental values where the mean absolute deviation of calculated bond distances and bond angles between the B3LYP-D3/6-311++G(3df,2pd) level and the experimental reports (G. Herzberg, Electronic spectra and electronic structure of polyatomic molecules[J]. *Van Nostrand, New York*, 1966.; A. P. Cox, J. M. Riveros, Microwave spectrum and structure of nitric acid[J]. *J. Chem. Phys.*, 1965, **42**, 3106-3112.) were 0.10 Å and 0.77°, respectively. So, the B3LYP-D3/6-311++G(3df,2pd) was reliable to optimize the geometries of all the stationary points in the *t*-N₂O₄ + NH₃ reaction.

	r		()	
Methods	ΔE^{a}	ΔE^{b}	ΔE^{c}	UE
CCSD(T)/CBS//B3LYP-D3/6-311++G(3 <i>df</i> ,2 <i>pd</i>)	-0.1	3.4	-14.4	0.00
CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3 <i>df</i> ,2 <i>pd</i>)	-0.5	3.2	-14.3	0.23
CCSD(T)-F12/cc-pVDZ//B3LYP-D3/6-311++G(3 <i>df</i> ,2 <i>pd</i>)	0.3	4.1	-14.2	0.43

Table S1 The energy barriers (ΔE) and unsigned error (UE) (kcal·mol⁻¹) for the *t*-N₂O₄ + NH₃ \rightarrow HNO₃ + NH₂NO reaction at different theoretical methods with zero-point energy (ZPE) correction

^{a, b and c} respectively denote the species of pre-reactive complexes, transition states and post-reactive complexes involved in $t-N_2O_4 + NH_3$ reaction.

To check the accuracy of the single-point energies calculation at the CCSD(T)/aug-cc-pVTZ level, the single-point energies based on the optimized geometries at B3LYP-D3/6-311++G(3*df*,2*pd*) are also calculated at the CCSD(T)/CBS//B3LYP-D3/6-311++G(3*df*,2*pd*) and CCSD(T)-F12/cc-pVDZ//B3LYP-D3/6-311++G(3*df*,2*pd*) levels. As seen in Table S1, the energies difference among three levels of CCSD(T)/CBS//B3LYP-D3/6-311++G(3*df*,2*pd*), CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3*df*,2*pd*) and CCSD(T)-F12/cc-pVDZ//B3LYP-D3/6-311++G(3*df*,2*pd*) and CCSD(T)-F12/cc-pVDZ//B3LYP-D3/6-311++G(3*df*,2*pd*) are less than 0.4 kcal·mol⁻¹. Thus, the CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3*df*,2*pd*) was reliable to calculate the single point energies of all the species in the *t*-N₂O₄ + NH₃ reaction without and with H₂O, (H₂O)₂, and H₂SO₄.

(6-311+G(3df,2p))/(UB3LYP/6-311+G(3df,2p))		
Species	This work ^a	Lin ^b
$t-N_2O_4 + NH_3$	0.0	0.0
IM $(t-N_2O_4\cdots NH_3)$	-0.5	-1.6
TS	3.2	3.7
IMF (HNO ₃ ····NH ₂ NO)	-14.3	-14.6
$HNO_3 + NH_2NO$	-9.5	-10.1

Table S2 Energies for the ammonolysis of $t-N_2O_4$ with zero-point correction (ZPE/(kcal·mol⁻¹)) included at the levels of CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3*df*,2*pd*) and UCCSD(T) /6-311+G(3*df*,2*p*)//UB3LYP/6-311+G(3*df*,2*p*)

^a Calculated at the CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3*df*,2*pd*) level;

^b The values are reported from reference (H. P. Trac, T. Le Huyen and M.-C. Lin, A Computational Study on the Redox Reactions of Ammonia and Methylamine with Nitrogen Tetroxide, *J. Phys. Chem. A*, 2020, **124**, 9923-9932.) and calculated at the UCCSD(T)/6-311+G(3*df*,2*p*)//UB3LYP/6-311+G(3*df*,2*p*) level.

The relative energies reported by Lin et al. (H. P. Trac, T. Le Huyen and M.-C. Lin, A Computational Study on the Redox Reactions of Ammonia and Methylamine with Nitrogen Tetroxide, J. Phys. Chem. A, 2020, 124, 9923-9932.) at the UCCSD(T)/6-311+G(3df,2p)// UB3LYP/6-311+G(3df,2p) level is defined as the energy of pre-reactive complex, transition state complex, and post-reactive complex relative to the total energies of N_2O_4 and NH_3 reactants. Whereas, the relative energies in Fig. 1 is defined as the energy of pre-reactive complex, transition state complex, and post-reactive complex relative to the total energies of $t-N_2O_4$ and NH₃ reactants. In order to compare with the relative energies in Fig. 1, N₂O₄ and *t*-N₂O₄ are optimized at the UB3LYP/6-311+G(3df,2p) level. Then, their single-point energy calculation was performed at the UCCSD(T)/6-311+G(3df,2p). In order to avoid confusing data, t-N₂O₄ + NH₃ was chosen as the reactants both in Fig. 1 of this work and Table S2 of the work reported by Lin et al. (H. P. Trac, T. Le Huyen and M.-C. Lin, A Computational Study on the Redox Reactions of Ammonia and Methylamine with Nitrogen Tetroxide, J. Phys. Chem. A, 2020, 124, 9923-9932.). Now, the relative energy of IM to the $t-N_2O_4 + NH_3$ reactants is -0.5 kcal·mol⁻¹ at the CCSD(T)/aug-ccpVTZ/B3LYP-D3/6-311++G(3df,2pd) level, which is close to the value of -1.6 kcal·mol⁻¹ reported by Lin et al. at the UCCSD(T)/6-311+G(3df,2p)//UB3LYP/6-311+G(3df,2p) level.

Figure S2 Optimized geometries and binding energies of the reactant and complexes t-N₂O₄···X and NH₃···X ($X = H_2O$, (H₂O)₂, and H₂SO₄) at the CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3*df*,2*pd*) level (bond distance in Angstroms and angles in degrees)

Figure S3 The optimized geometries and the electric energies (in Hartree-Fock) of *t*- $N_2O_4\cdots NH_3\cdots X$ ($X = H_2O$, (H_2O)₂, and H_2SO_4) at the B3LYP-D3/6-311++G(3*df*,2*pd*) level (bond distances in Angstroms and angles in degrees)

The two line the $t - N_2O_4 + NH_3$	reactio	n withou	ut and w	1th cata	lyst $X (X = H_2 G)$	$O, (H_2O)$) ₂ , and H_2SO_4)	
Species	ZPE	ΔE	S	ΔG	$\Delta(E + ZPE)$	ΔH	T_1	
$\underline{\qquad \qquad t-N_2O_4+NH_3}$								
$t-N_2O_4 + NH_3$	33.7	0.0	128.0	0.0	0.0	0.0	0.03081	
IM	35.8	-2.7	93.7	9.3	-0.5	-0.9	0.02209	
TS	34.9	2.0	87.2	13.8	3.2	1.7	0.02015	
IMF	37.0	-17.7	94.3	-5.1	-14.3	-15.1	0.01893	
$HNO_3 + NH_2NO$	35.8	-11.6	124.5	-9.5	-9.5	-10.5	0.03862	
		H_2	o catal	vsis				
$t-N_2O_4 + H_2O + NH_3$	46.7	0.0	173.0	0.0	0.0	0.0	0.4085562	
$t-N_2O_4\cdots H_2O + NH_3$	48.8	-5.0	141.3	6.1	-2.9	-3.3	0.02957932	
$NH_3 \cdots H_2O + t - N_2O_4$	48.9	-6.6	151.2	1.6	-4.4	-4.9	0.03215459	
IM_WM1	51.2	-9.2	108.0	13.6	-4.7	-5.7	0.02132328	
TS_WM	48.6	-2.4	100.5	18.9	-0.5	-2.7	0.0181261	
IMF_WM	52.1	-27.9	109.2	-4.8	-22.5	-23.8	0.01787333	
$HNO_3 \cdots H_2O + NH_2NO$	50.9	-22.2	140.0	-9.6	-18.0	-19.4	0.03682544	
		(H ₂	0)2 cata	lysis				
$t-N_2O_4 + (H_2O)_2 + NH_3$	61.8	0.0	197.3	0.0	0.0	0.0	0.04107502	
$t-N_2O_4\cdots(H_2O)_2 + NH_3$	63.9	-8.0	158.1	5.4	-5.9	-6.3	0.02838712	
$\mathrm{NH}_3\cdots(\mathrm{H}_2\mathrm{O})_2 + t\text{-}\mathrm{N}_2\mathrm{O}_4$	64.7	-10.8	161.6	1.7	-7.9	-8.9	0.3263045	
IM_WD1	66.5	-14.3	122.3	11.6	-9.6	-10.7	0.01976307	
TS_WD	64.1	-11.6	110.3	13.7	-9.3	-12.3	0.0169219	
IMF_WD	67.4	-37.0	123.0	-10.8	-31.4	-33.0	0.01744671	
$HNO_3 \cdots (H_2O)_2 + NH_2NO$	66.1	-27.3	156.9	-12.5	-23.0	-24.6	0.03570489	
		H_2	SO₄ cata	lysis				
$t-N_2O_4 + NH_3 + H_2SO_4$	57.5	0.0	200.2	0.0	0.0	0.0	0.04607405	
t-N ₂ O ₄ ····H ₂ SO ₄ + NH ₃	58.7	-10.7	165.4	1.1	-9.5	-9.2	0.02818615	
$NH_3 \cdots H_2 SO_4 + t - N_2 O_4$	59.2	-16.4	168.7	-5.7	-14.7	-15.1	0.0367992	
IM_SA1	60.9	-18.5	127.3	6.2	-15.0	-15.5	0.0193617	
TS_SA	58.9	-16.8	122.6	6.7	-15.4	-16.5	0.0180758	
IMF_SA	61.9	-32.5	132.2	-8.4	-28.0	-28.6	0.01740467	
$HNO_3 \cdots H_2SO_4 + NH_2NO$	60.8	-26.8	162.1	-13.1	-23.5	-24.4	0.03672083	

Table S3 Zero-point energies (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta(E + ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H(298 \text{ K})/(kcal·mol⁻¹)$), entropy (S(298 K/((cal·mol⁻¹·K⁻¹)), T_1 diagnostic values and free energies ($\Delta G(298 \text{ K})/(kcal·mol⁻¹)$) for the reactants, intermediates and transition states involved in the *t*-N₂O₄ + NH₃ reaction without and with catalyst $X(X = H_2O, (H_2O)_2, \text{ and } H_2SO_4)$

^{*a*} ZPE and S values obtained at the B3LYP-D3/6-311++G(3*df*,2*pd*) level;

^b The zero-point energies (ZPE/(kcal·mol⁻¹)), relative energies (ΔE and $\Delta(E + ZPE)/(kcal·mol⁻¹)$), enthalpies ($\Delta H(298 \text{ K})/(kcal·mol⁻¹)$) entropy (S(298 K/((cal·mol⁻¹·K⁻¹)) , T_1 diagnostic values and free energies ($\Delta G(298 \text{ K})/(kcal·mol⁻¹)$)) obtained at the CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3df,2pd) level.

Figure S4 Hindrance potentials for t-N₂O₄, t-N₂O₄...NH₃, and HNO₃ calculated at the B3LYP-D3/6-311++G(3*df*,2*pd*) level

Altitude	T/K	NH ₃ …H ₂ O	NH_3 ···($H_2O)_2$	$NH_3 \cdots H_2SO_4$				
	280	1.43×10^{-20}	1.98×10^{-20}	2.40×10^{-14}				
	290	1.09×10^{-20}	1.18×10^{-20}	9.67×10^{-15}				
0.1	298	8.96×10^{-21}	7.97×10^{-21}	4.90×10^{-15}				
0 km	300	8.54×10^{-21}	7.26×10^{-21}	4.15×10^{-15}				
	310	6.78×10^{-21}	4.62×10^{-21}	1.89×10^{-15}				
	320	5.47×10^{-21}	3.03×10^{-21}	9.02×10^{-16}				
5 km	259.3	2.71×10^{-20}	6.76×10^{-20}	2.03×10^{-13}				
10 km	229.7	8.11×10^{-20}	5.39 × 10 ⁻¹⁹	7.53×10^{-12}				
15 km	212.6	1.79×10^{-19}	2.38×10^{-18}	9.97×10^{-11}				

Table S4 Equilibrium constants (cm³·molecule⁻¹) for NH₃····H₂O, NH₃····(H₂O)₂, and NH₃····H₂SO₄ within the range of 213-320 K and 0-15 km ^a

^a All equilibrium constants were calculated by using energies computed at CCSD(T)/aug-cc-pVTZ level and partition functions obtained at the B3LYP-D3/6-311++G(3df,2pd) level.

Catalysts	<i>T</i> /K	280	290	298	300	310	320
	20% RH	5.16×10^{16}	9.56×10^{16}	1.55×10^{17}	1.72×10^{17}	2.92×10^{17}	4.70×10^{17}
H ₂ O ^a	40% RH	$1.03 imes 10^{17}$	1.91×10^{17}	3.09×10^{17}	3.43×10^{17}	5.84×10^{17}	9.40×10^{17}
	60% RH	$1.55 imes 10^{17}$	2.87×10^{17}	4.64×10^{17}	$5.15 imes 10^{17}$	8.77×10^{17}	$1.41 imes 10^{18}$
	80% RH	$2.07 imes 10^{17}$	$3.82 imes 10^{17}$	$6.18 imes 10^{17}$	$6.86 imes 10^{17}$	$1.17 imes 10^{18}$	$1.88 imes 10^{18}$
	100% RH	$2.58 imes 10^{17}$	4.78×10^{17}	$7.73 imes 10^{17}$	8.58×10^{17}	$1.46 imes 10^{18}$	$2.35 imes 10^{18}$
	20% RH	8.18×10^{12}	2.36×10^{13}	$5.44 imes 10^{13}$	$6.50 imes 10^{13}$	$1.63 imes 10^{14}$	$3.71 imes 10^{14}$
	40% RH	3.27×10^{13}	9.46×10^{13}	$2.18 imes 10^{14}$	$2.60 imes 10^{14}$	$6.52 imes 10^{14}$	$1.48 imes 10^{15}$
(H ₂ O) ₂ ^a	60% RH	7.36×10^{13}	$2.13 imes 10^{14}$	$4.90 imes 10^{14}$	$5.85 imes 10^{14}$	$1.47 imes 10^{15}$	3.33×10^{15}
	80% RH	$1.31 imes 10^{14}$	$3.78 imes 10^{14}$	$8.70 imes 10^{14}$	$1.04 imes 10^{15}$	$2.60 imes 10^{15}$	$5.92 imes 10^{15}$
	100% RH	$2.04 imes 10^{14}$	$5.91 imes 10^{14}$	$1.36 imes 10^{15}$	$1.62 imes 10^{15}$	$4.06 imes 10^{15}$	9.24×10^{15}
H ₂ SO ₄ ^b	$[H_2SO_4] = 10^7$ molecules·cm ³	3.90 × 10 ⁷	3.80 × 10 ⁷	3.70×10^{7}	3.70×10^{7}	3.60 × 10 ⁷	3.40×10^{7}
	$[H_2SO_4] = 10^8$ molecules·cm ³	$3.90 imes 10^8$	$3.80 imes 10^8$	$3.70 imes 10^8$	$3.70 imes 10^8$	3.60×10^{8}	$3.40 imes 10^8$

Table S5 Concentrations (molecule cm^{-3}) of H₂O, (H₂O)₂, and H₂SO₄ within the temperature range of 280-320 K

^a The values are reported from reference (J. M. Anglada, G. J. Hoffman, L. V. Slipchenko, M. M. Costa, M. F. Ruiz-Lopez and J. S. Francisco, Atmospheric significance of water clusters and ozone-water complexes, *J. Phys. Chem. A*, 2013, **117**, 10381-10396.);

^b The values are reported from reference (H. Zhang, O. Kupiainen-Määttä, X. Zhang, V. Molinero, Y. Zhang and Z. Li, The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, *J. Chem. Phys.*, 2017, **146**, 184308.).

Catalysts	5 km	10 km	15 km	20 km	25 km	30 km
H ₂ O ^a	2.41×10^{16}	4.92×10^{15}	$1.96 imes 10^{13}$	9.56×10^{12}	$5.21 imes 10^{12}$	2.62×10^{12}
(H ₂ O) ₂ ^a	$2.67 imes 10^{12}$	2.31×10^{11}	$6.26 imes 10^6$	$1.35 imes 10^6$	$3.58 imes 10^5$	8.03×10^{4}
H ₂ SO ₄ ^b	6.00×10^{7}	8.30×10^{6}	2.40×10^{5}	4.20×10^{4}	4.59 × 10 ⁵	2.88×10^{6}

Table S6 Concentrations (molecule·cm⁻³) of H_2O , $(H_2O)_2$, and H_2SO_4 at different altitudes in troposphere

^a The values are reported from reference (J. M. Anglada, G. J. Hoffman, L. V. Slipchenko, M. M. Costa, M. F. Ruiz-Lopez and J. S. Francisco, Atmospheric significance of water clusters and ozone-water complexes, *J. Phys. Chem. A*, 2013, **117**, 10381-10396.);

^b The values are reported from reference (H. Zhang, O. Kupiainen-Määttä, X. Zhang, V. Molinero, Y. Zhang and Z. Li, The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters, *J. Chem. Phys.*, 2017, **146**, 184308.).

to pre-reactive calculated by master equation within the antitude range of 0.15 km								
Altitude	<i>T</i> /K	Channel R	Channel WM	Channel WD	Channel SA			
	280	1.12×10^{-10}	6.70×10^{-10}	2.54×10^{-10}	6.38 × 10 ⁻¹¹			
	290	1.14×10^{-10}	6.81×10^{-10}	2.59×10^{-10}	6.49 × 10 ⁻¹¹			
0.1	298	1.16×10^{-10}	6.91×10^{-10}	2.62×10^{-10}	6.58 × 10 ⁻¹¹			
0 km	300	1.16×10^{-10}	6.93×10^{-10}	2.63×10^{-10}	6.60 × 10 ⁻¹¹			
	310	1.18×10^{-10}	7.05×10^{-10}	2.68×10^{-10}	6.71 × 10 ⁻¹¹			
	320	1.20×10^{-10}	7.16×10^{-10}	2.72×10^{-10}	6.82 × 10 ⁻¹¹			
5 km	259.3	1.08×10^{-10}	6.44×10^{-10}	2.45×10^{-10}	6.13 × 10 ⁻¹¹			
10 km	229.7	1.02×10^{-10}	6.07×10^{-10}	2.30×10^{-10}	5.78×10^{-11}			
15 km	212.6	9.78 × 10 ⁻¹¹	5.84×10^{-10}	2.22×10^{-10}	5.56 × 10 ⁻¹¹			

Table S7 The high-pressure limiting rate constants (cm³·molecule⁻¹·s⁻¹) for the route from reactants to pre-reactive calculated by master equation within the altitude range of 0-15 km^a

^a Channel R, Channel WM, Channel WD, and Channel SA were respectively denoted the t-N₂O₄ + NH₃ reaction without and with H₂O, (H₂O)₂, and H₂SO₄.

The VRC-VTST calculations were carried out with the potential surface obtained at CCSD(T)/aug-cc-pVTZ//B3LYP-D3/6-311++G(3*df*,2*pd*) level, and were performed by variationally minimizing the rate constant with respect to the distances between pivot points and with respect to the location of the pivot points. Specifically, a single-faceted dividing surface for the ammonolysis of t-N₂O₄ with *X* were produced by using two pivot points. Such as, using two pivot points produces a single-faceted dividing surface for the one-step reaction of NH₃…*X* + t-N₂O₄. One pivot point is located at a distanced from the center of mass (COM) of NH₃…*X*, where the vector connecting the pivot point with NH₃…*X*'s COM is perpendicular to the NH₃…*X* plane, and the other pivot point is located at a distanced from the COM of t-N₂O₄, where the vector connecting the pivot point with t-N₂O₄ is perpendicular to t-N₂O₄, where the vector sare fixed successively at 0.2 Å. The reaction coordinates is the distance between a pivot point on one reactant and a pivot point on the other reactant. The distances between pivot points is varied from 2.5 to 6.0 Å for NH₃…*X* + t-N₂O₄ in each case with a 0.2 Å grid increment.

<i>T</i> (1	K)	10 Torr	50 Torr	100 Torr	300 Torr	760 Torr
	280	5.03 × 10 ⁻¹⁷	5.14 × 10 ⁻¹⁷	5.16 × 10 ⁻¹⁷	5.18 × 10 ⁻¹⁷	5.20 × 10 ⁻¹⁷
	290	5.90×10^{-17}	6.07×10^{-17}	6.10×10^{-17}	6.12×10^{-17}	6.13 × 10 ⁻¹⁷
k _R	298	6.65×10^{-17}	6.88×10^{-17}	6.92×10^{-17}	6.94×10^{-17}	6.95×10^{-17}
ĸ _R	300	6.84×10^{-17}	7.09×10^{-17}	7.13×10^{-17}	7.16×10^{-17}	7.17×10^{-17}
	310	$7.84 imes 10^{-17}$	8.20×10^{-17}	8.26×10^{-17}	8.30×10^{-17}	8.32×10^{-17}
	320	9.40 × 10 ⁻¹⁷	9.40×10^{-17}	9.55×10^{-17}	9.55×10^{-17}	9.57×10^{-17}
	280	1.16×10^{-19}	1.16 × 10 ⁻¹⁹	1.16×10^{-19}	1.16×10^{-19}	1.16×10^{-19}
	290	1.33×10^{-19}	1.33 × 10 ⁻¹⁹	1.33×10^{-19}	1.33 × 10 ⁻¹⁹	1.33 × 10 ⁻¹⁹
k _{WM}	298	1.48×10^{-19}				
	300	1.52×10^{-19}				
	310	1.72×10^{-19}				
	320	1.93 × 10 ⁻¹⁹	1.93×10^{-19}	1.93×10^{-19}	1.93×10^{-19}	1.93×10^{-19}
	280	6.07×10^{-16}				
	290	5.29×10^{-16}				
1	298	4.76×10^{-16}				
K _{WD}	300	4.64×10^{-16}				
	310	4.11×10^{-16}	4.11 × 10 ⁻¹⁶	4.11×10^{-16}	4.11×10^{-16}	4.11 × 10 ⁻¹⁶
	320	3.66×10^{-16}				
	280	1.48×10^{-16}	1.49 × 10 ⁻¹⁶	1.49×10^{-16}	1.49 × 10 ⁻¹⁶	1.49 × 10 ⁻¹⁶
	290	1.48×10^{-16}	1.49×10^{-16}	1.49×10^{-16}	1.49×10^{-16}	1.50×10^{-16}
L	298	$1.48 imes 10^{-16}$	1.50×10^{-16}	1.50×10^{-16}	1.50×10^{-16}	1.50×10^{-16}
$\kappa_{\rm SA}$	300	$1.49 imes 10^{-16}$	1.50×10^{-16}	1.50×10^{-16}	1.51×10^{-16}	1.51×10^{-16}
	310	1.49×10^{-16}	1.51×10^{-16}	1.52×10^{-16}	1.52×10^{-16}	1.52×10^{-16}
	320	1.49×10^{-16}	1.53×10^{-16}	1.53×10^{-16}	1.54×10^{-16}	1.54×10^{-16}

Table S8 Rate constants (*k*) (in cm³·molecule⁻¹·s⁻¹) for the *t*-N₂O₄ + NH₃ reaction without and with catalyst $X(X = H_2O, (H_2O)_2, \text{ and } H_2SO_4)$ calculated by master equation within the temperature range of 280-320 K and the pressure range of 10-760 Torr ^a

^a $k_{\rm R}$, $k_{\rm WM}$, $k_{\rm WD}$, and $k_{\rm SA}$ were respectively denoted the rate constants for the t-N₂O₄ + NH₃, t-N₂O₄ + NH₃...H₂O, t-N₃.

$(n \ 11_{2}0,$	(1120), (1120) , and (1120) , and (1120) , within the temperature range of 200-520 K								
Catalysts	RH	280 K	290 K	298 K	300 K	310 K	320 K		
<i>Ŀ'</i>	20% RH	$8.58\times10^{\text{-}23}$	$1.39\times10^{\text{-}22}$	$2.05\times10^{\text{-}22}$	$2.23\times10^{\text{-}22}$	$3.40\times10^{\text{-}22}$	$4.97\times10^{\text{-}22}$		
	40% RH	1.71 × 10 ⁻²²	2.78 × 10 ⁻²²	4.09 × 10 ⁻²²	4.44 × 10 ⁻²²	6.80 × 10 ⁻²²	9.95 × 10 ⁻²²		
	60% RH	2.58×10^{-22}	4.18 × 10 ⁻²²	6.14 × 10 ⁻²²	6.67 × 10 ⁻²²	1.02×10^{-21}	1.49×10^{-21}		
K _{WM}	80% RH	3.44 × 10 ⁻²²	5.57 × 10 ⁻²²	8.18 × 10 ⁻²²	$8.88\times10^{\text{-}22}$	1.36×10^{-21}	$1.99\times10^{\text{-}21}$		
	100% RH	4.29 × 10 ⁻²²	6.96 × 10 ⁻²²	1.02×10^{-21}	1.11 × 10 ⁻²¹	1.70×10^{-21}	$2.49\times10^{\text{-}21}$		
	$k'_{\rm WM}/k_{\rm tot}$	$8.26 imes 10^{-6}$	1.14 × 10 ⁻⁵	1.47 × 10 ⁻⁵	1.55 × 10 ⁻⁵	2.04 × 10 ⁻⁵	2.60×10^{-5}		
	20% RH	9.81 × 10 ⁻²³	1.47 × 10 ⁻²²	2.07 × 10 ⁻²²	2.19 × 10 ⁻²²	3.09 × 10 ⁻²²	4.11 × 10 ⁻²²		
	40% RH	$3.92\times10^{\text{-}22}$	5.89 × 10 ⁻²²	8.28 × 10 ⁻²²	8.76 × 10 ⁻²²	1.24 × 10 ⁻²¹	1.64 × 10 ⁻²¹		
.,	60% RH	8.82 × 10 ⁻²²	1.33 × 10 ⁻²¹	1.86×10^{-21}	1.97×10^{-21}	2.79×10^{21}	$3.69\times10^{\text{-}21}$		
K' _{WD}	80% RH	1.57 × 10 ⁻²¹	2.35×10^{-21}	$3.30 imes 10^{-21}$	3.50×10^{-21}	4.93 × 10 ⁻²¹	$6.57 imes 10^{-21}$		
	100% RH	2.45×10^{-21}	3.68×10^{-21}	5.16×10^{-21}	5.46×10^{-21}	$7.70 imes 10^{-21}$	1.02×10^{-20}		
	$k'_{\rm WD}/k_{\rm tot}$	4.71 × 10 ⁻⁵	6.00×10^{-5}	7.43 × 10 ⁻⁵	7.61 × 10 ⁻⁵	9.26 × 10 ⁻⁵	$1.07 imes 10^{-4}$		
k'sa	$[H_2SO_4] = 10^7$ molecules·cm ³	1.39 × 10 ⁻²²	5.49 × 10 ⁻²³	2.72 × 10 ⁻²³	2.32 × 10 ⁻²³	1.03 × 10 ⁻²³	4.71 × 10 ⁻²⁴		
	$[H_2SO_4] = 10^8$ molecules \cdot cm ³	1.39×10^{-21}	5.49 × 10 ⁻²²	2.72 × 10 ⁻²²	2.32 × 10 ⁻²²	1.03 × 10 ⁻²²	4.71 × 10 ⁻²³		
	$k'_{\rm SA}/k_{\rm tot}$	2.67 × 10 ⁻⁵	$8.97 imes 10^{-6}$	3.92×10^{-6}	3.23×10^{-6}	1.24×10^{-6}	4.93 × 10-7		

Table S9 Calculated effective rate constants (k', s^{-1}) for the *t*-N₂O₄ + NH₃ reaction with catalyst *X* (*X* = H₂O, (H₂O)₂, and H₂SO₄) within the temperature range of 280-320 K ^a

^a k'_{WM} , k'_{WD} , and k'_{SA} were respectively denoted the effective rate constants for the t-N₂O₄ + NH₃···H₂O, t-N₂O₄ + NH₃···H₂O)₂, and t-N₂O₄ + NH₃···H₂SO₄ reactions; k_{tot} represents the sum of k_R , k'_{WD} , and k'_{SA} ($k_{tot} = k_R + k'_{WD} + k'_{SA}$).