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Technical detailing of the softwares 

Codes for dataset downloading and feature engineering are available in 

https://github.com/lokamigauti/surrey-networks. The study was made possible by utilising the 

Python 3.8 and the following libraries: 

● Dataset download: 

○ cdsapi 0.5.1 (ECMWF) 

● GeoPackage handling: 

○ geopandas 0.10.2 (Jordahl, et al., 2021) 

○ pandas 1.4.1 (Reback et al., 2022, McKinney, 2010) 

○ shapely 1.8.0 (Gillies et al., 2021) 

● Vector rasterization: 

○ geocube 0.1.1 (Snow et al., 2022) 

○ rasterio 1.2.10 (Gillies et al., 2013) 

○ geopandas 0.10.2 (Jordahl, et al., 2021) 

● Data manipulation and visualisation: 

○ numpy 1.21.4 (Harris et al., 2020) 

○ xarray 0.20.1 (Hoyer & Hamman, 2017, Hoyer et al., 2022) 

○ matplotlib 3.4.3 (Hunter, 2007) 

● Machine learning: 

○ scikit-learn 1.0.1 (Pedregosa et al., 2011) 

○ keras 2.8.0 (Chollet et al., 2015) 

Monitors’ performance and calibration 

The monitors’ performance was characterised by a comparison between the sensors and a 

reference sensor (Grimm EDM 107 optical particle counter, Grimm-Aerosol GmbH & Co., 

Germany) inside the ENVILUTION® Chamber according to the protocol described by 

Omidvarborna et al. (2020). The monitors were placed in the chamber with the reference 

sensor for 2.5 hours. The internal conditions of temperature, relative humidity and PM 

concentrations were modified in the chamber (Figure S1). We calculated Pearson's correlation 

coefficient (r), coefficient of determination (R²), root mean square error (RMSE) and mean 

absolute percentage error (MAPE). A summary of the average scores is in Table S1. The 

scores presented in detail are in Figures S2, S3, S4, and S5. 

 

Table S1: Average scores of the uncalibrated monitors in relation to the reference sensor 

and standard deviation in parenthesis. 
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 PM1 PM2.5 PM10 

r 0.81(0.07) 0.75(0.09) 0.72(0.10) 

R² 0.44(0.20) 0.50(0.18) 0.53(0.17) 

MAPE 0.46(0.16) 0.56(0.20) 0.70(0.25) 

RMSE 17.40(6.18) 25.87(9.17) 25.52(9.03) 

 

The PM measurements have a high correlation with the reference sensor, indicating a similar 

shape with the reference. Although, the R² and MAPE indicate considerable differences in the 

data and reference values. The RMSE quantified the differences as 17, 26 and 26 μg/m³ on 

average for PM1, PM2.5, and PM10 respectively.  

 

A calibration was performed in order to improve the RMSE of the PM measurements (Figures 

S6, S7, and S8). We used the calibration data from the ENVILUTION® Chamber 

characterization. The PM measurement is reported in modes, containing redundant 

information about the particle sizes. For this reason, we calculated the concentrations in size 

ranges, rather than in size modes. The ranges used were 0-1, 1-2.5 and 2.5-10 μm (PM0-1, 

PM1-2.5, and PM2.5-10, resp.) being the former equivalent to PM1, the second derived from the 

subtraction of the PM2.5 and PM1, and the latter derived from the subtraction of the PM10 and 

the PM2.5.  

The equation was performed by applying a ridge polynomial regression using the following 

equation: 

𝑃𝑀𝑟𝑒𝑓 = ∑ 𝑤𝑋𝑃3
 
𝑣𝑎𝑟 , 

Where XP3 is the scaled matrix of the polynomial combination without the constant term of the 

particulate matter, temperature and relative humidity until degree 3. The w is the Ridge 

Coefficients matrix, and the PMref is the particulate matter concentration measured by the 

reference sensor. The scaling was performed using the subtraction of the mean and division 

by standard deviation. The ridge coefficients were calculated using the following equation: 

𝑚𝑖𝑛𝑤 = ||𝑋𝑤 − 𝑃𝑀𝑟𝑒𝑓||
2

2
+ 𝛼||𝑤||

2

2
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Where α is the complexity parameter. The second member of the equation controls the 

minimization, forcing it to maintain the regression coefficients as low as possible, which is 

reasonable to the physics underlying the problem. The complexity parameter prevents 

overfitting by restricting the size of the ridge coefficients. We selected α as 30 for PM2.5-10, 10 

for PM1-2.5, and 5 for PM0-1 to maintain a good compromise between the representations of 

small variances, and at the same time improve the peak representation without overfitting the 

data. A weight vector was attributed to the measurement matrix in order to prioritise the data 

within the expected range of the local background. The weights were assigned as 1 to samples 

whose concentrations of PM10 were lower than 20 μg/m³ and 0.5 to the rest. 

 

 



 

 
Figure S1: Chamber calibration data of the low-cost monitors. The variables inside the 

chamber (relative humidity, temperature, and particles) where individually and simultainiously 

controlled in order to make varied scenarios for calibration. The temperature and relative 

humidity where the chosen variables for calibration as they affect the sensors structure and 

internal geometry by thermal expansion and contraction, and the particles’ size by 

condensation. 



 

 
Figure S2: Heatmap of the coefficient of determination of the uncalibrated low-cost monitors 

by the measured variables. 



 

 
Figure S3: Heatmap of the root-mean-square error of the uncalibrated low-cost monitors by 

the measured variables. 



 

 
Figure S4: Heatmap of the mean absolute percentage error of the uncalibrated low-cost 

monitors by the measured variables. 



 

 
Figure S5: Heatmap of the Pearson’s r of the uncalibrated low-cost monitors by the measured 

variables. 

 



 

 

 
Figure S6: Calibration results for the monitors. The left graphs show the calibrated data and 

the right graphs show the original data. 



 

 
Figure S7: Data of the uncalibrated PM monitors in relation to the reference sensor.  



 

 
Figure S8: Data of the PM monitors in relation to the reference sensor after calibration.  

 

Features description and sources 

Table S2: Features description and sources. 

 

Feature 
Name in the 

model 
Type Description Source 

particulate 
matter 

concentration 

pm1, pm25, 
pm10 

target variable 
LCM PM 

concentration 
Davis® AirLink 

mean target PM 
concentration 

ymean temporal 
average of PM 
concentrations 

Davis® AirLink 

day of the week day_of_week temporal 
day of the week 
from Monday to 
Sunday (0 to 7) 

- 

month month temporal 
month, with 

January as 0 
- 



 

and December 
as 11 

wind speed 

u10, and v10, 
with a prefix 
indicating the 

direction of the 
data in relation 
to the city (e.g. 

sw_u10, w_v10, 
e_u10, nw_v10) 

temporal 
At 10 m from 
the ground, in 

m/s 
ERA5 

dewpoint 
temperature 

d2m, with the 
same prefixes 
as wind speed 

temporal 
At 2 m from the 

ground, in 
Kelvin 

ERA5 

temperature 
t2m, with the 
same prefixes 
as wind speed 

temporal 
At 2 m from the 

ground, in 
Kelvin 

ERA5 

boundary layer 
dissipation 

bld, with the 
same prefixes 
as wind speed 

temporal 

Amount of 
kinect energy 
converted into 

heat by 
turbulence in 

the lower 
atmosphere, in 

J/m² 

ERA5 

boundary layer 
height 

blh, with the 
same prefixes 
as wind speed 

temporal In metres ERA5 

forecast surface 
roughness 

fsr, with the 
same prefixes 
as wind speed 

temporal 

aerodynamic 
roughness 
length, in 
metres 

ERA5 

low cloud cover 
lcs, with the 

same prefixes 
as wind speed 

temporal 

Fraction of 
cloud cover 

below 
approximately 2 

km 

ERA5 

total cloud 
cover 

tcc, with the 
same prefixes 
as wind speed 

temporal 
Fraction of 

cloud coverage 
ERA5 

total 
precipitation 

tp, with the 
same prefixes 
as wind speed 

temporal 

Accumulated 
large-scale and 

convective 
precipitation, in 

metres 

ERA5 

surface net ssr, with the temporal Difference of ERA5 



 

solar radiation same prefixes 
as wind speed 

incident solar 
radiation and 

the reflected by 
Earth’s surface 

mean total 
precipitation 

rate 

mtpr, with the 
same prefixes 
as wind speed 

temporal In kg/m²s ERA5 

wind angle wind_angle temporal In degrees 
Calculated from 

ERA5 

local road 
density 

A Road, B 
Road, Local 

Access Road, 
Local Road, 
Minor Road, 
Motorway, 

Restricted Local 
Access Road, 
and Secondary 
Access Road 

spatial 

Density of roads 
in a 200 m² 

square around 
each point. By 

road type. 

OS 

3 nearest 
monitor PM 

concentration 

nearest_monitor
_pm10, 

nearest_monitor
_pm25, 

nearest_monitor
_pm1, with a 

suffix indicating 
the distance 

rank (e.g. 
nearest_monitor

_pm10_0, 
nearest_monitor

_pm10_2) 

spatiotemporal In ug/m³ Davis® AirLink 

3 nearest 
monitor 
distance 

nearest_monitor
_distance, with 

a suffix 
indicating the 
distance rank 

spatiotemporal In degrees Davis® AirLink 

3 nearest 
monitor angle 

nearest_monitor
_angle, with a 

suffix indicating 
the distance 

rank 

spatiotemporal In degrees 
Calculated from 

the Davis® 
AirLink data 

3 nearest 
monitor angle in 
relation to the 

wind 

nearest_monitor
_angle_wind, 
with a suffix 

indicating the 
distance rank 

spatiotemporal 

From 0 (the 
monitor being 

downwind) to 1 
(upwind) 

Calculated from 
the Davis® 
AirLink and 
ERA5 data 



 

3 nearest 
monitors PM 
concentration 
interpolated 

nearest_monitor
_pm1_idw, 

nearest_monitor
_pm25_idw, 

nearest_monitor
_pm10_idw 

spatiotemporal 
Interpolation by 

IDW with the 
weight of 2 

Calculated from 
the Davis® 
AirLink data 

difference 
between the 
interpolated 

concentrations 
and the mean 
concentration 

pm_idwvar spatiotemporal - 
Calculated from 

the Davis® 
AirLink data 

 

PM data description 

In this section we present details of the PM concentrations measured by the low-cost monitors. 

Figure S9 show a comparison between the monitors mean PM concentrations. The values are 

in respect to the average of all monitors. Figure S10 show the PM10 concentration distribution 

in the dataset of each monitor. Table S3 presents the quartile distribution of the monitors’ data. 

Figure S11 show the calibrated PM concentration over time by monitor. Table S4 presents a 

statistical description of the PM data by monitor. Figure S12 shows a heatmap of the average 

difference between each monitor for each interquartile, where the rows and columns are 

respective to the monitor`s number. 

 



 

Figure S9: Comparison of the mean difference between the PM concentrations and the 

average between the monitors for each monitor. 

 

 
Figure S10: Histograms of the difference between the PM10 concentrations and the average 

between the monitors for each monitor. 

 

Table S3: Minimun, first, secont, third quartile and maximun values of PM data. 

Monitor 1 2 3 4 5 6 7 8 

PM1 

0.66/5.6
2/8.47/1
7.43/46.

82 

1.64/4.6
9/7.71/1
4.00/37.

18 

0.27/3.6
4/6.78/1
3.29/35.

18 

1.11/3.7
1/5.79/1
1.24/26.

97 

1.93/4.7
0/7.43/1
3.76/35.

00 

1.80/4.8
6/8.13/1
4.48/39.

79 

1.09/3.2
2/5.45/9
.92/32.6

1 

2.17/5.2
0/7.96/1
3.08/40.

61 

PM2.5 

0.66/5.8
3/8.79/1
9.14/47.

48 

1.64/4.9
2/8.41/1
5.64/47.

76 

0.27/3.9
4/7.73/1
5.97/45.

65 

1.11/3.8
3/6.12/1
2.55/33.

72 

1.94/4.9
7/8.05/1
6.42/43.

77 

1.80/5.0
7/8.66/1
7.57/51.

57 

1.10/3.4
5/6.34/1
1.95/42.

07 

2.18/5.3
5/8.34/1
4.43/48.

83 

PM10 

0.66/5.8
6/8.79/1
9.15/47.

51 

1.65/4.9
3/8.42/1
5.69/47.

95 

0.27/3.9
4/7.74/1
5.98/45.

82 

1.13/3.8
3/6.12/1
2.61/33.

89 

1.96/4.9
8/8.08/1
6.49/43.

99 

1.84/5.1
3/8.75/1
7.65/51.

89 

1.13/3.4
8/6.35/1
2.01/42.

35 

2.23/5.4
1/8.39/1
4.51/49.

15 

 



 

 
Figure S11: PM concentration over time, from the calibrated monitors data. The concentrations 

are in μg/m³. Each colour represents one monitor. 

 

Table S4: Mean, median, and standard deviation of PM. The numbers are in a “mean / median 

(standard deviation)” format. The PM values are in μg/m³. 

 

Monitor number PM1 PM2.5 PM10 

1 12.29 / 8.47 (9.62) 13.55 / 8.79 (10.95) 13.58 / 8.79 (10.98) 

2 10.29 / 7.71 (7.64) 11.81 / 8.42 (9.63) 11.84 / 8.42 (9.66) 

3 9.22 / 6.79 (7.55) 10.91 / 7.73 (9.52) 10.93 / 7.74 (9.55) 

4 8.11 / 5.79 (6.17) 9.10 / 6.12 (7.54) 9.14 / 6.12 (7.56) 

5 9.93 / 7.43 (7.13) 11.36 / 8.05 (8.88) 11.39 / 8.08 (8.91) 

6 10.73 / 8.13 (8.12) 12.36 / 8.66 (10.23) 12.43 / 8.75 (10.28) 

7 7.57 / 5.45 (6.19) 8.83 / 6.34 (7.82) 8.87 / 6.35 (7.85) 

8 10.26 / 7.96 (7.10) 11.45 / 8.34 (8.78) 11.50 / 8.39 (8.82) 

 



 

 



 

Figure S12: Average difference of PM1, PM2.5, and PM10 concentrations between the monitors 

for each interquartile of the data. The rows and columns are respective to the monitor`s 

number. The difference is expressed by the colour of the cell. The diagonal is zero because 

the difference between the monitor and itself is zero. 

 

The ML models 

In order to maintain a reasonable length in the manuscript, the figures of the evaluation of the 

PM2.5 and PM10 are presented here (Figures S11 and S12) alongside their sanity tests 

(Figures S13 and S14). 

 

 
Figure S13: Comparison between the values of PM2.5 predicted by the model (y axis) and the 

actual values (x axis) in the evaluation dataset. The color of the dots are porportional to the 

density of points. The dashed line is the 1:1 line. The number of neurons per layer and dropout 

rate are in the top-right corner in the format “[number of neurons, dropout rate]”. The evaluation 

metrics are displayed over the figure, and the name of the model is below it. 

 



 

 
Figure S14: Comparison between the values of PM10 predicted by the model (y axis) and the 

actual values (x axis) in the evaluation dataset. The color of the dots are porportional to the 

density of points. The dashed line is the 1:1 line. The number of neurons per layer and dropout 

rate are in the top-right corner in the format “[number of neurons, dropout rate]”. The evaluation 

metrics are displayed over the figure, and the name of the model is below it. 

 



 

 
Figure S15: Comparison of the weekly variation of PM2.5 between the model and the dataset. 

Stations numbers 2, 7 and 8 are the evaluation ones. The rest belongs to the training set. 

 



 

 
Figure S16: Comparison of the weekly variation of PM10 between the model and the dataset. 

Stations numbers 2, 7 and 8 are the evaluation ones. The rest belongs to the training set. 

 



 

Sensitivity analysis 

The algorithm used consists of the following steps: 

1. Calculate the min, max and median values of the training set features. 

2. Calculate the model output with the median values calculated in step 1. 

3. Define a resolution constant (10 in this work). 

4. Calculate an array of values equally spaced between the min and max values 

calculated in step 1, with a size equal to the constant defined in step 3. 

5. For each feature, calculate the model output using the median values calculated in 

step 1, swapping the values of the target feature with each value of the array calculated 

in step 4. 

6. For each feature, calculate the absolute difference between the output values 

calculated in step 5 and the output values calculated in step 2, and divide by the 

constant defined in step 3. 

7. For each feature, sum the values calculated in step 6. 

The values of the analysis cannot be directly applied in other studies, nor can be used to 

extrapolate physical meaning. It can be used as a tool to rank the features in order of 

importance considering only their linear influence on the model. The full analysis output is 

available in Figures S15, S16, and S17. 

 



 

 
Figure S17: Sensitivity analysis of the PM1 model. (Continue below) 



 

 
Figure S17: Sensitivity analysis of the PM1 model. (Continue below) 



 

 
Figure S17: Sensitivity analysis of the PM1 model. 

 



 

 
Figure S18: Sensitivity analysis of the PM2.5 model. (Continue below) 

 



 

 
Figure S18: Sensitivity analysis of the PM2.5 model. (Continue below) 



 

 
Figure S18: Sensitivity analysis of the PM2.5 model. 

 



 

 
Figure S19: Sensitivity analysis of the PM10 model. (Continue below) 

 



 

 
Figure S19: Sensitivity analysis of the PM10 model. (Continue below) 

 



 

 
Figure S19: Sensitivity analysis of the PM10 model. 

 

Early version of the PM1 model 

Figures illustrating the evalyation of the early version of the PM1 model are presented here 

(Figures S18 and S19). The quantity of points in the evaluation dataset is higher due the use 

of one hour frequency. The frequency also allow the sanity test by the daily variation (Figure 

S19, left), where the sub estimation of PM1 concentration in the nighttime is visible. 



 

 
Figure S20: Comparison between the values of PM1 predicted by the estou version of the  

model (y axis) and the actual values (x axis) in the evaluation dataset. The color of the dots 

are porportional to the density of points. The dashed line is the 1:1 line. The number of neurons 

per layer and dropout rate are in the top-right corner in the format “[number of neurons, dropout 

rate]”. The evaluation metrics are displayed over the figure, and the name of the model is 

below it. 



 

 
Figure S21: Comparison of the daily (left) and weekly (right) variation of PM1 between the early 

version of the model and the dataset. Stations numbers 2, 7 and 8 are the evaluation ones. 

The rest belongs to the training set. The hour is in local time. 
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