Electronic Supplementary Material (ESI) for Environmental Science: Atmospheres. This journal is © The Royal Society of Chemistry 2024

Environmental Science: Atmospheres

Supporting Information for

Improving Model Representation of Rapid Ozone Deposition over Soil in the Central Tibetan Plateau

Chong Zhang^a, Jianshu Wang^a, Yingjie Zhang^{ta}, Wanyun Xu^b, Gen Zhang^b, Guofang Miao^c, Jiacheng Zhou^d, Hui Yu^d, Weixiong Zhao^d, Weili Lin^e, Ling Kang^a, Xuhui Cai^a, Hongsheng Zhang^f, Chunxiang Ye^{ta}

^a SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Science, Peking University, Beijing, China.

^b State Key Laboratory of Severe Weather & Key Laboratory for Atmospheric Chemistry of CMA, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, Beijing, China.

^c School of Geographical Sciences, Fujian Normal University, Fuzhou, China.

^d Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanisms, Chinese Academy of Science, Hefei, Anhui, China.

^e College of Life and Environmental Sciences, Minzu University of China, Beijing, China

^f Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China

⁺ Now at: School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.

Contents of this file

Figures S1 to S4

Introduction

The supporting information includes four supplementary figures.

Figure S1. Tests of quality control. (a) Comparison of the turbulence transport time of ozone (τ_{trans}) and the chemical reaction time (τ_{chem}) of ozone with NO. (b) Footprint area in entire observation period. Comparison of (c) sensible heat flux (*H*), (d) latent heat flux (*LE*) between observation of the eddy covariance method and the aerodynamic gradient method. (e) Diel profile of ozone gradient.

Figure S2. Time series of meteorological parameters and soil characterization parameters associated with ozone deposition. (a) solar radiation (R_g), (b) air temperature at 1.8 m (T_a) and soil temperature at -5 cm (T_{soil}), (c) air relative humidity at 1.8 m (RH_a) and soil water content (SWC), (d) wind speed at 1.8 m (WS) and wind direction (WD).

Figure S4. R_{soil} as a function of (a) RH_{surf} and (b) T_{surf} . Dots are block mean data with ranges of 10% for RH_{surf} and 5 °C for T_{surf} . (c) Comparison of observed v_d , simulated v_d using R_{soil} as a function of RH_{surf} and T_{surf} with input meteorological data from observation. Time alignments are performed to data used for comparison.

References

- 1 H. Güsten, G. Heinrich, E. Mönnich, D. Sprung, J. Weppner, A. B. Ramadan, M. R. M. Ezz El-Din, D. M. Ahmed and G. K. Y. Hassan, *Atmospheric Environment*, 1996, **30**, 911–918.
- 2 P. Stella, B. Loubet, E. Lamaud, P. Laville and P. Cellier, *Agricultural and Forest Meteorology*, 2011, **151**, 669–681.
- 3 P. Stella, B. Loubet, C. de Berranger, X. Charrier, E. Ceschia, G. Gerosa, A. Finco, E. Lamaud, D. Serça, C. George and R. Ciuraru, *Atmospheric Environment*, 2019, **199**, 202–209.