Supplementary Information

Tailoring surface cation configuration of Ruddlesden-Popper perovskites for controllable water oxidation performance

Yu Li, Gao Chen,^{*} Hsiao-Chien Chen, Yanping Zhu, Liangshuang Fei, Longwei Xu, Tiancheng Liu, Jie Dai, Haitao Huang, Wei Zhou,^{*} and Zongping Shao^{*}

Experimental Procedures

Synthesis of L₂N and LSNF samples. L₂N were synthesized by a typical sol-gel method. For example, 43.3 g La(NO₃)₃·6H₂O and 14.5405 g Ni(NO₃)₂·6H₂O (all of analytical grade, Sinopharm Chemical Reagent Co., Ltd.) were dissolved in deionized water. Then, a mixed Ethylenediamine tetraacetic acid (EDTA, C₁₀H₁₆N₂O₈, 43.836 g) and Citric acid monohydrate (CA, C₆H₈O₇, 63.042 g) solution were added to form a molar ratio of 1:2:1 for the metal ions/CA/EDTA. Next, an aqueous ammonium hydroxide solution (NH₃·H₂O, 28%) was added to adjust the pH to approximately 6. The mixed solution was then heated at 90 °C until it formed a gel. We then put the gel in the oven for 5 hours. Finally, the obtained precursor was put into a 1000 °C muffle furnace for 5 h to obtain the perovskite powder. LSNF was synthesized via the same process above except the different stoichiometric amounts. The dissolution process took place in a quartz beaker.

Synthesis of L₂N@NF samples. Firstly, the obtained L₂N powders were grounded by ball-milling for 1 hour. Then, we added 0.075g FeCl₃·6H₂O into 30 ml deionized water to form a solution (~ 0.01 M). 0.2g grounded L₂N was then added into it. The suspension liquid was then placed in an ultrasonic cell disruptor for half an hour. After the end of it, the product was washed several times with deionized water by centrifugation. The obtained product was placed in the oven to dry. Next, we make the FeCl₃·6H₂O solution 30 ml again with 0.05g FeCl₃·6H₂O and added the dried product into it with the ultrasonic assisted for 30 minutes. Finally, the obtained L₂N@NF powders were washed with ultrapure water by centrifugation and dried.

Synthesis of $L_2N@NF_x$ ($L_2N@NF_{0.51}$, $L_2N@NF_{0.78}$, $L_2N@NF_{1.63}$, and $L_2N@NF_{1.99}$) samples. The steps for synthesis are the same as $L_2N@NF$, except for FeCl₃ solution concentration. Briefly, 0.03g, 0.05g, 0.11g, and 0.2g FeCl₃·6H₂O were added separately to 30 ml deionized water to form the solution and then 0.2g grounded L_2N was added to them for 0.5 h. After several centrifuges, the products were transferred to 30 ml aqueous solution containing 0.05g FeCl₃·6H₂O for 30 minutes again with the ultrasonic assisted. Finally, the obtained $L_2N@NF_{0.51}$, $L_2N@NF_{0.78}$, $L_2N@NF_{1.63}$ and $L_2N@NF_{1.99}$ samples were centrifuged and dried. The x here stand for the value of (Ni+Fe)/La. According to the pH meter test, solutions of 0.03g, 0.05g, 0.075g, 0.11g and 0.2g FeCl₃·6H₂O dissolved in 30 ml deionized water have pH values of 2.74, 2.61, 2.53, 2.48 and 2.38, respectively.

Synthesis of L₂N-Fe samples. L₂N-Fe was synthesized by introducing Fe during the L₂N electrochemical testing. Firstly, 0.1 M aqueous $Fe(NO_3)_3$ solution was prepared from $Fe(NO_3)_3 \cdot 9H_2O$ and ultrapure water. Then, adding 0.08 ml of 0.1 M $Fe(NO_3)_3$ solution into the 100 ml of 1.0 M KOH electrolyte. Continuous linear voltammetry scanning until performance no longer changes. According to the calculation, the pH of the electrolyte is almost unchanged.

Materials characterization. The XRD patterns of samples were obtained from the X-ray powder diffractometer (Rigaku Smartlab, Cu K α radiation, λ =1.5418 Å). FESEM (HITACHI S-4800) was used to conduct the morphologies of the catalysts and TEM (FEI Tecnai G2 T20) was used to get the lattice parameters equipped with a Philips Tecnai T30F field emission instrument. Desorption curve and pore size distribution were obtained with a Brunauer-Emmett-Teller (BET) analysis system with a N₂ adsorptive medium. The valence state and content of the elements was obtained with the XPS (PHI550). The 4d orbitals of La, 3p orbitals of Ni and 2p orbitals of Fe were tested to determine the content of surface elements. The XAS spectra were collected in total-fluorescence-yield mode at ambient air in BL-12B2 at SPring-8, JARSI.

Electrode preparation and electrochemical characterization. Electrochemical properties and the

electrochemical oxygen intercalation were tested in an O₂-saturated and argon-saturated 1.0 M KOH solution, respectively. The glassy carbon electrode (PINE, 5 mm diameter, 0.196 cm²) was used as the working electrode and the Hg/HgO electrode as the reference electrode. Carbon rods serve as counter electrodes. The glassy carbon electrode is supported with catalysts and connected to a CHI 760E electrochemistry electrochemical station. 10 mg catalyst, 10 mg super P, 1 mL anhydrous ethanol, and 100 µL Nafion were mixed and ultrasonic for 30 min. Spread 5 µL ink evenly on the glassy carbon electrode. LSV was performed from 0.2 V to 1 V versus Hg/HgO at the RDE at 1600 rpm with a sweep rate of 5 mV s⁻¹. 1 mg catalyst and 0.1 mg Super P were uniformly loaded on the 1 cm × 1 cm carbon paper to test the stability. Electrochemical oxygen insertion and extraction test was performed at a scan rate of 20 mV s⁻¹ between -0.2 V and 0.6 V versus Hg/HgO. To obtain the specific oxidative charge from the integration of oxidation waves, the baseline of each cyclic voltammetry (CV) was fit and subtracted from the specific current density. Oxygen ion diffusion coefficient was performed with the chronoamperometry. A potential of more than E_{1/2} (defined as the potential halfway between the peak currents for oxygen insertion and extraction) 50 mV is applied to the working electrode to obtain chronoamperometry data. The measured data were plotted as current versus the inverse square root of time (i vs. t^{-1/2}), in which a linear regression was used to obtain the intercept with the t^{-1/2} axis (at i = 0). According to the equation $\lambda = a(D_0 t)^{-1/2}$, the oxygen ion diffusion coefficient (D_{o}) can be calculated. Here, λ is a dimensionless shape factor and was assumed to be 2. a need to be estimated with the relation of S = $6/(2a\rho)$, where S is the BET specific surface area and ρ is the theoretical density which can be obtained from the Rietveld analysis. Turnover frequency (TOF) was investigated via the following equation:

Turnover frequency (TOF) =
$$\frac{j}{n \times F \times N_s}$$

Where j is the current, n is the number of electrons transferred to evolve a molecule of the product (for H_2 and O_2 , n is 2 or 4), F is Faradaic constant and N_s is the number of moles of active sites available for the catalysis. S-number was calculated via following equation:

$$S - number = \frac{n(O_2)}{n(dissolved Ni)}$$

The amount of produced oxygen was calculated from total charge and the dissolved iridium was obtained from ICP-MS results.

Isotope-Labeled Method. Firstly, A carbon paper with catalysts (2 mg cm⁻²) was activated in ¹⁸O labeled 1.0 M KOH for 10 min at 10 mA cm⁻². Then, the carbon paper was carefully washed with $H_2^{16}O$ deionized water to remove surface $H_2^{18}O$. Finally, the carbon paper was measured for three CV cycles in 1.0 m KOH with $H_2^{16}O$. The CV test was performed at a scan rate of 4 mV s⁻¹ between 0 V and 0.7 V versus Ag/AgCl. All the tests were carried out in an H-cell. The gaseous products from the anode side were analyzed by mass spectrometry.

MEA electrolyser system. The AEM water electrolyzer included the anode ($L_2N@NF$ and IrO_2), cathode (commercial Pt/C, 20 wt% Pt), gas diffusion layer (Ni foam), and anion exchange membrane (Sustainion X37-50 Grade RT). The $L_2N@NF$ was mixed with Super P with a weight ratio of 4:1. The obtained powder was then added into the liquid with 1 ml anhydrous ethanol and 100 µl nafion. After the ultrasound, the ink was sprayed on the Ni foam. The electrode area of anode and cathode is 4 cm² (2 cm*2 cm), and the effective electrode area of the anode is 1 cm² (1 cm*1 cm). In other words, anode catalysts are only sprayed in the central 1 cm*1 cm area. The catalyst loading amount for the anode is 3 mg cm⁻² and 1 mg_{Pt} cm⁻² for the cathode. All catalysts were sprayed on a gas diffusion layer using an ultrasonic spray machine. The AEM water electrolyzer was connected with a digital source meter (Keithley 2420). 1 M KOH was pumped into the electrolyzer with a peristaltic pump and formed a cycle. The

durability testing of AEM water electrolyzer was conducted at 60 °C at the current density of 200 mA cm⁻². The membrane was changed every 100 h for $L_2N@NF$.

Figure S1. Three typical surface cation configurations under different concentration of FeCl₃ solution. (Left) Low-concentration FeCl₃ solution leads to the residual of inert La, which hinders the formation of Ni-Fe pairs. (Right) Excessive Fe^{3+} ions are deposited on the surface of L₂N@NF, burying the subsurface Ni-Fe pairs. (Middle) Optimized-concentration of Fe^{3+} ions yield the dissolution of La and formation of Ni-Fe pairs on the surface.

Figure S2. OER activity of pristine L_2N and L_2N after a series of FeCI₃ solutions with varying concentrations ($L_2N@NF_x$). L2N@NF exhibited the best OER activity among the $L_2N@NF_x$ catalysts.

Figure S3. OER stability of pristine L_2N and L_2N after a series of FeCl₃ solutions with varying concentrations ($L_2N@NF_x$).

Figure S4. OER performance. The OER performance of $L_2N@NF$ treated with the same concentration of FeCl₃ solution and Fe(NO)₃ solution.

Figure S6. Elemental mappings. The elemental mappings of L₂N. The scale bar is 500 nm.

Figure S7. Elemental mappings. The elemental mappings of $L_2N@NF$. The scale bar is 500 nm.

Figure S8. TEM image of L_2N . The scale bar is 5 nm.

Figure S10. Rietveld refinement patterns. XRD refinement of the LSNF.

Figure S11. Elemental mappings of LSNF. The scale bar is 500 nm.

E (V vs. Hg/HgO) Figure S12. LSV plots. The 36th and 48th LSV of L₂N in 1.0 M KOH electrolyte containing Fe³⁺. The potentials here are not corrected for iR.

Figure S13. SEM images of L₂N-Fe. The scale bar is 3 µm.

Figure S14. Elemental mappings of L₂N-Fe. The scale bar is 500 nm.

Figure S15. Fourier transform EXAFS. Ni K-edges of L_2N , $L_2N@NF$ and L_2N -Fe samples. Although the peak intensities of Ni-O, Ni-La, and corner-sharing Ni-Ni in L_2N -Fe were slightly lower than those for the pristine L_2N , the Ni-La peak remained at the same position (approximately 3.4 Å), indicating that there were no detectable edge-sharing Ni-Fe pairs in the L_2N -Fe sample.

Figure S16. The mass activities. The mass activities of L₂N, L₂N@NF, LSNF and L₂N-Fe.

Figure S17. oxidative charge (C). oxidative charge of four samples obtained from the integration of oxidation waves. To facilitate the calculation of TOF, the charge unit here adopts Coulomb (C).

Figure S18. XPS analyze. XPS results for Ni 3p species on the surface of four samples. The Ni 3p spectrum was decomposed into 4 distinct components according to the previous methods developed by Burriel et. al.¹ The full peaks correspond to the 3p3/2 lines and the empty curves to the 3p1/2 lines. Ni²⁺ was marked in navy and Ni³⁺ was marked in dark cyan. All components used the same FWHM. The peak area of the Ni 3p1/2 was set up to have half area of their counterparts in the Ni 3p3/2.

Figure S19. N_2 adsorption-desorption isotherms and pore distributions. The left four pictures are the typical N_2 adsorption-desorption isotherms of four samples, which can get the BET surface area. The right four pictures are the pore size analyze.

Figure S20. Specific oxidative charge (µC cm-2 oxide). Specific oxidative charge of four samples resulting from the integration of oxidation waves. The subscript oxide represents "the specific surface area of oxides measured by BET".

Figure S21. Fitted intercalation CVs for four samples. Integrating the region between the solid line and the red dotted line. The current is converted to the specific current according to the BET area.

Figure S22. Oxygen ion diffusion coefficients. The diffusion rate was calculated from the chronoamperometry data. More details can be find in the section of Electrode preparation and electrochemical characterization.

Figure S23. OER kinetic currents density. LSVs of (a) L_2N , (b) $L_2N@NF$, (c) LSNF and (d) L_2N -Fe in O_2 -saturated KOH electrolytes with varying pH.

Figure S24. TEM image. The TEM image of L₂N@NF after the stability test.

Figure S25. Elemental mappings. The elemental mapping of $L_2N@NF$ after 60 h stability test.

Figure S26. ICP-MS results. The dissolved metal concentration in the electrolyte of L₂N and LSNF at each sampling point from ICP-MS results.

Figure S27. The optical image of the electrocatalyst system. (a) Digital photograph and (b) schematic of the anion exchange membrane electrolyzer.

Table S1. Comparison of the OER performance between the $L_2N@NF$ catalyst and some state-of-the-art perovskite catalysts.

Catalysts	Substrate	Electrolyte	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Reference
L ₂ N@NF	GCE	1 M KOH	258	54	This work
LSNF30	GCE	0.1M KOH	~365	44	2
RP-SCFN	GCE	0.1M KOH	334	57	3
La ₂ CoO ₄	GCE	0.1M KOH	400	64	4
PBSCF0.45	GCE	1 M KOH	290	69	5
RP/P-LSCF	GCE	0.1M KOH	324	58	6
RP-LaSr ₃ (Co _{0.5} Fe _{0.5}) ₃ O _{10-δ}	GCE	0.1M KOH	388	83.9	7
La ₅ Ni ₃ CoO _{13-δ}	GCE	0.1M KOH	370	35	8
La ₄ Ni ₃ O _{10.26}	GCE	0.1M KOH	480(ŋ1)	142	9
$H_{3.6}IrO_4 \cdot 3.7H_2O$	GCE	0.1 M HClO ₄	~270	/	10
SmBaCo _{1.5} Mn _{0.5} O _{5+δ}	pellets	1 M KOH	310	/	11
LSCN8264	GCE	1 M KOH	290	/	12
BSCFI-91	GCE	1 M KOH	300	61.2	13
LFNO-II NRs	GCE	1 M KOH	302	50	14
LNMO-1	GCE	1 M KOH	370	58	15
SNCF-NRs	GCE	0.1M KOH	390	61	16
La ₂ Li _{0.5} Ni _{0.5} O ₄	GCE	0.1M KOH	~410(η ₁)	90	17
NiO-(La _{0.613} Ca _{0.387}) ₂ NiO _{3.562}	GCE	0.1M KOH	373	42	18
NMP-treated Sr ₃ FeCoO _{7-δ}	GCE	1 M KOH	343	63	19
LSN-03	GCE	0.1M KOH	$\sim 520(\eta_{0.8})^*$	/	20
La ₃ SrNi ₃ O ₁₀	GCE	0.1M KOH	500	89	21
r-LSCF-P	GCE	0.1M KOH	350	64	22
LP-LaSr ₃ Co _{1.5} Fe _{1.5} O _{10-δ}	GCE	0.1M KOH	388	83.9	23
ВСТО	GCE	0.1M KOH	470	87	24
Bi ₄ Ti ₃ O ₁₂ ·(BiCoO ₃) ₂	GCE	1 M NaOH	320	34	25
Sr ₃ Co ₂ O ₅ Cl ₂	GCE	1 M KOH	350	62	26
OP-SLNO	GCE	0.1M KOH	490	151.4	27
Sr ₃ Ir ₂ O ₇	CCE	1 M KOH	296	53	20
	UCE	0.5 M H ₂ SO ₄	259	50	28
Sr ₂ IrO ₄	GCE	0.5 M H ₂ SO ₄	$360(\eta_{50.4})^{a}$	/	29
Sr.IrO	GCF	0.1 M HClO ₄	290	45/73 ^b	30
Sr ₂ IrO ₄	UCE	0.5 M H ₂ SO ₄	291	40/120 ^b	50

*: Ohmic potential drop was not compensated for in this measurement.

a: The current density 50.4 mA cm⁻²_{disk} was calculated from the article data. The overpotential 360 mV was also higher than our results at the current density of 50.4 mA cm⁻²_{disk}.

b: The numbers before and after indicated Tafel slope fitted at low current densities and high current densities, respectively.

Table S2. Chemical composition of the L ₂ N and L ₂ N@NF samples.					
Catalysts	La (mg L ⁻¹)	Ni (mg L ⁻¹)	Fe (mg L ⁻¹)	Composition ratio	
L ₂ N	36.43	7.989	/	La _{1.93} NiO ₄	
L ₂ N@NF	20.02	4.792	1.684	$La_{0.1441}Ni_{0.0816}Fe_{0.03015}$	

Table S3. Surface atomic concentration from XPS.

Catalysts	La (Sr)	Ni	Fe
L ₂ N	83.05%	16.95%	/
L ₂ N@NF	49.31%	24.66%	26.03%
LSNF	76.66%	13.27%	10.07%
L ₂ N-Fe	52.88%	2.46%	44.66%

The surface element content of LSNF and L_2N -Fe measured by XPS also proved the successful application of our surface tailoring strategy. The approximate element ratio of La (Sr)/Ni/Fe on LSNF and L_2N surfaces indicates the La/Sr-terminal of LSNF. Nearly half of the Fe content on L_2N -Fe surface indicates a large deposition of Fe. Furthermore, the amount of La on L_2N -Fe surface was reduced to almost half, which may be part of La wrapped in Ni/Fe during the 40-cycle LSVs.

Catalysts	TOF(s ⁻¹) @300mV	Electrolyte	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Reference
L ₂ N@NF	1.8	1 M KOH	258	54	This work
F-NiFe-A	0.25 ± 0.03	1М КОН	218	31	31
S-NiCoFe LDH/CC	0.102	1М КОН	206	48	32
NiFe-LDH HMS/NF	0.206	1М КОН	239	53	33
NiO/NiFe LDH	0.71	1 M KOH	$274(\eta_{100})$	30	34
Fe ²⁺ - NiFe LDH	0.09	1M KOH	249	40.3	35
Ni _{0.67} Fe _{0.33} /C	0.3	1М КОН	210	35.1	36
FeNi LDH	0.028	1М КОН	232	48	37
Ni(Fe)O _x H _y	~0.75	1М КОН	/	/	38
Ni _{0.75} Fe _{0.25} OOH	9(η ₃₅₀)	1М КОН	/	/	39
Ni ₄₅ Fe ₅₅	0.14	0.1 M KOH	~310	35	40
Ni ₆₅ +Fe ₃₅ p.m.	0.1	0.1 M KOH	298	37	41
Ni ₂ Fe ₁ /C	1.04	1 М КОН	250	/	42
Ni _{2/3} Fe _{1/3} -rGO	0.1	1 М КОН	210	40	43
Ultrathin LDH	0.14577	1 М КОН	210	31	44
Ni ₈ Fe-LDH@CNTs	0.35	1М КОН	220	34	45
FeNi-rGO LDH	0.987	0.1M KOH	~205	39	46

Table S4. Comparison of the OER intrinsic activity between the $L_2N@NF$ catalyst and some well-known NiFe catalysts.

Table S5. Specific surface areas of four samples measured by nitrogen adsorption testing using the BET method.

Catalysts	$S(m^2 g^{-1})$	Pore volume(cm ³ g ⁻¹)
L ₂ N	1.65	0.006747
L ₂ N@NF	13.6	0.051236
LSNF	1.16	0.004862
L ₂ N-Fe	10.8	0.023367

Table S6. MEA stability and the corresponding test conditions of some state-of-the-art electrocatalysts.

Catalysts (anode//cathode)	Stability	Current density (mA cm ⁻²)	Temperature (°C)	Membrane	Ref.
L2N@NF//Pt/C	300 h	200 60 Sustanio	Sustanion X37-50	This	
	500 II	200	00	grade RT	work
IrO ₂ //Pt/C	34 h	200 60 Sustanion X37-5 grade RT	Sustanion X37-50	This	
	J - II		00	grade RT	work
Fe-NiMoNH ₃ /H ₂ //NiMo-	25 h	500	20	Sustanion X37-50	47
NH ₃ /H ₂	25 11	500		grade T	
BSCF-FS//Pt/C	 5 h	200	 50	Tokuyama supplied	
	5 11	200 50	A201	01	
(NiCo) ₃ Se ₄ //Pt/C	First segment	1000	25	Sustanion X37-50	49
	50h				12
	Second				
(NiCo) ₃ Se ₄ //Pt/C	segment	1000	60	Sustanion X37-50	49
	40h				
NiFe nanofoam//PtRu/C	170 h	200	60	HTMA-DAPP	50
NiCoFeO _x //Pt/C	180 h	200	50	FAA-3	51

References

- 1 M. Burriel, S. Wilkins, J.P. Hill, M.A. Muñoz-Márquez, H.H. Brongersma, J.A. Kilner, M.P. Ryan and S.J. Skinner, *Energy Environ. Sci.*, 2014, **7**, 311-316.
- 2 R.P. Forslund, W.G. Hardin, X. Rong, A.M. Abakumov, D. Filimonov, C.T. Alexander, J.T. Mefford, H. Iyer, A.M. Kolpak, K.P. Johnston and K.J. Stevenson, *Nat. Commun.*, 2018, **9**, 3150.
- 3 Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin, H. Sun, Y. Zhong, Y. Chen, F. Zhang, H.-J. Lin, C.-T. Chen, W. Zhou,
 X. Zhang, S.C. Smith, Z. Shao and H. Wang, *EcoMat.*, 2020, 2, e12021.
- 4 B. Yin, Y. Li, N. Sun, X. Ji, Y. Huan, D. Dong, X. Hu and T. Wei, *Electrochim. Acta.*, 2021, **370**, 137747.
- 5 H. Jo, Y. Yang, A. Seong, D. Jeong, J. Kim, S.H. Joo, Y.J. Kim, L. Zhang, Z. Liu, J.-Q. Wang, S.K. Kwak and G.

Kim, J. Mater. Chem. A, 2022, 10, 2271-2279.

- 6 Y. Zhu, Q. Lin, Z. Hu, Y. Chen, Y. Yin, H.A. Tahini, H.-J. Lin, C.-T. Chen, X. Zhang, Z. Shao and H. Wang, *Small.*, 2020, **16**, 2001204.
- 7 S. Liu, C. Sun, J. Chen, J. Xiao and J.-L. Luo, ACS catal., 2020, 10, 13437-13444.
- 8 S.R. Choi, J.-I. Lee, H. Park, S.W. Lee, D.Y. Kim, W.Y. An, J.H. Kim, J. Kim, H.-S. Cho and J.-Y. Park, *Chem. Eng. J.*, 2021, **409**, 128226.
- 9 J. Yu, J. Sunarso, Y. Zhu, X. Xu, R. Ran, W. Zhou and Z. Shao, Chem. Eur. J., 2016, 22, 2719-2727.
- 10 R. Zhang, P.E. Pearce, V. Pimenta, J. Cabana, H. Li, D. Alves Dalla Corte, A.M. Abakumov, G. Rousse, D. Giaume, M. Deschamps and A. Grimaud, *Chem. Mater.*, 2020, **32**, 3499-3509.
- 11 A. Olszewska, K. Świerczek and A. Niemczyk, Crystals., 2020, 10, 205.
- 12 J. Cheng, Z. Wang, L. Zou, M. Zhang, G. Zhang, Y. Dong, Y. Jiang, Y. Huang, N. Nakashima and B. Chi, *J. Alloy. Compd.*, 2020, **831**, 154728.
- 13 Q. Luo, D. Lin, W. Zhan, W. Zhang, L. Tang, J. Luo, Z. Gao, P. Jiang, M. Wang, L. Hao and K. Tang, *ACS Appl. Energy Mater.*, 2020, **3**, 7149-7158.
- 14 H. Wang, J. Wang, Y. Pi, Q. Shao, Y. Tan and X. Huang, Angew. Chem. Int. Ed., 2019, 58, 2316-2320.
- 15 Y. Tong, J. Wu, P. Chen, H. Liu, W. Chu, C. Wu and Y. Xie, J. Am. Chem. Soc., 2018, 140, 11165-11169.
- 16 Y. Zhu, W. Zhou, Y. Zhong, Y. Bu, X. Chen, Q. Zhong, M. Liu and Z. Shao, *Adv. Energy Mater.*, 2017, **7**, 1602122.
- 17 C. Yang, M. Batuk, Q. Jacquet, G. Rousse, W. Yin, L. Zhang, J. Hadermann, A.M. Abakumov, G. Cibin, A. Chadwick, J.-M. Tarascon and A. Grimaud, *ACS Energy Lett.*, 2018, **3**, 2884-2890.
- 18 R. Liu, F. Liang, W. Zhou, Y. Yang and Z. Zhu, *Nano Energy.*, 2015, **12**, 115-122.
- 19 K. Xu, F. Song, J. Gu, X. Xu, Z. Liu and X. Hu, J. Mater. Chem. A, 2018, 6, 14240-14245.
- 20 K.-N. Jung, J.-H. Jung, W.B. Im, S. Yoon, K.-H. Shin and J.-W. Lee, ACS Appl. Mater. Interfaces, 2013, 5, 9902-9907.
- 21 C. Cao, C. Shang, X. Li, Y. Wang, C. Liu, X. Wang, S. Zhou and J. Zeng, Nano Lett., 2020, 20, 2837-2842.
- 22 C. Li, Y. Wang, C. Jin, J. Lu, J. Sun and R. Yang, Int. J. Hydrogen Energy., 2020, 45, 22959-22964.
- 23 S. Liu, H. Luo, Y. Li, Q. Liu and J.-L. Luo, Nano Energy., 2017, 40, 115-121.
- 24 X. Li, Y. Sun, Q. Wu, H. Liu, W. Gu, X. Wang, Z. Cheng, Z. Fu and Y. Lu, *J. Am. Chem. Soc.*, 2019, **141**, 3121-3128.
- 25 X. Li, H. Liu, Z. Chen, Q. Wu, Z. Yu, M. Yang, X. Wang, Z. Cheng, Z. Fu and Y. Lu, *Nat. Commun.*, 2019, **10**, 1409.
- 26 Y. Miyahara, K. Miyazaki, T. Fukutsuka and T. Abe, Chem. Commun., 2017, 53, 2713-2716.
- 27 H. Kim, Y.S. Lim and J.H. Kim, Chem. Eng. J., 2022, 431, 134278.
- 28 C. Zhu, H. Tian, B. Huang, G. Cai, C. Yuan, Y. Zhang, Y. Li, G. Li, H. Xu and M.-R. Li, *Chem. Eng. J.*, 2021, **423**, 130185.
- 29 C.W. Song, J. Lim, H.B. Bae and S.-Y. Chung, Energy Environ. Sci., 2020, 13, 4178-4188.
- 30 A.L. Strickler, D. Higgins and T.F. Jaramillo, ACS Appl. Energy Mater., 2019, 2, 5490-5498.
- 31 Q. Xu, H. Jiang, X. Duan, Z. Jiang, Y. Hu, S. W. Boettcher, W. Zhang, S. Guo and C. Li, *Nano Lett.*, 2021, **21**, 492-499.
- 32 L.M. Cao, J.W. Wang, D.C. Zhong and T.B. Lu, J. Mater. Chem. A, 2018, 6, 3224.
- 33 C. Zhang, M. Shao, L. Zhou, Z. Li, K. Xiao and M. Wei, ACS Appl. Mater. Interfaces, 2016, 8, 33697-33703.

- 34 Z. W. Gao, J. Y. Liu, X. M. Chen, X. L. Zheng, J. Mao, H. Liu, T. Ma, L. Li, W.C. Wang and X.W. Du, *Adv. Mater.*, 2019, **31**, 1804769.
- 35 Z. Cai, D. Zhou, M. Wang, S.-M. Bak, Y. Wu, Z. Wu, Y. Tian, X. Xiong, Y. Li, W. Liu, S. Siahrostami, Y. Kuang, X,-Q. Yang, H. Duan, Z. Feng, H. Wang and X. Sun, *Angew. Chem. Int. Ed.*, 2018, **57**, 9392-9396.
- 36 S. Yin, W. Tu, Y. Sheng, Y. Du, M. Kraft, A. Borgna and R. Xu, Adv. Mater., 2018, 30, 1705106.
- 37 X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, Angew. Chem., 2014, 126, 7714-7718.
- 38 M.B. Stevens, C.D.M. Trang, L.J. Deng and S.W. Boettcher, J. Am. Chem. Soc., 2017, 139, 11361-11364.
- 39 S. Zou, M.S. Burke, M.G. Kast, J. Fan, N. Danilovic and S.W. Boettcher, Chem. Mater., 2015, 27, 8011-8020.
- 40 M. Görlin, P. Chernev, J.F. de Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau and P. Strasser, *J. Am. Chem. Soc.*, 2016, **138**, 5603-5614.
- 41 M. Görlin, P. Chernev, P. Paciok, C.-W. Tai, J.F. de Araújo, T. Reier, M. Heggen, R. Dunin-Borkowski, P. Strasser and H. Dau, *Chem. Commun.*, 2019, **55**, 818-821.
- 42 Y.-J. Ko, M.H. Han, H. Kim, J.-Y. Kim, W.H. Lee, J. Kim, J.Y. Kwak, C.-H. Kim, T.-E. Park, S.-H. Yu, W.-S. Lee, C.H. Choi, P. Strasser and H.-S. Oh, *Chem Catalysis*, 2022, **2**, 2312-2327.
- 43. W. Ma, R. Ma, C. Wang, J. Liang, X, Liu, K. Zhou and T. Sasaki, ACS Nano, 2015, 9, 1977-1984.
- 44 C. Kuai, Y. Zhang, D. Wu, D. Sokaras, L. Mu, S. Spence, D. Nordlund, F. Lin and X.-W. Du, *ACS Catal.*, 2019, **9**, 6027-6032.
- 45 D. Zhao, K. Jiang, Y. Pi, and X. Huang, ChemCatChem, 2017, 9, 84-88.
- 46 X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, Angew. Chem. Int. Ed., 2014, 53, 7584-7588.
- 47 P. Chen and X. Hu, Adv. Energy Mater., 2020, 10, 2002285.
- 48 E. Fabbri, M. Nachtegaal, T. Binninger, X. Cheng, B.-J. Kim, J. Durst, F. Bozza, T. Graule, R. Schäublin, L. Wiles, M. Pertoso, N. Danilovic, K.E. Ayers and T.J. Schmidt, *Nat. Mater.*, 2017, **16**, 925-931.
- 49 J. Abed, S. Ahmadi, L. Laverdure, A. Abdellah, C.P. O'Brien, K. Cole, P. Sobrinho, D. Sinton, D. Higgins, N. J. Mosey, S.J. Thorpe and E.H. Sargent, *Adv. Mater.*, 2021, **33**, 2103812.
- 50 D. Li, E.J. Park, W. Zhu, Q. Shi, Y. Zhou, H. Tian, Y. Lin, A. Serov, B. Zulevi, E.D. Baca, C. Fujimoto, H.T. Chung and Y.S. Kim, *Nat. Energy.*, 2020, **5**, 378-385.
- 51 D. Xu, M.B. Stevens, M.R. Cosby, S. Z. Oener, A.M. Smith, L.J. Enman, K.E. Ayers, C.B. Capuano, J.N. Renner, N. Danilovic, Y. Li, H. Wang, Q. Zhang and S.W. Boettcher, ACS Catal., 2019, 9, 7-15.