Supplementary Information

Over 28% Efficiency Perovskite/Cu(InGa)Se₂ Tandem Solar Cells: Highly Efficient Sub-cells and Their Bandgap Matching

Xinxing Liu,^{‡1} Junjun Zhang,^{‡1} Liting Tang,^{‡1} Junbo Gong,^{‡1*} Wang Li,¹ Zengyang Ma,¹

Zexin Tu,¹ Yanyan Li,¹ Ruiming Li,¹ Xuzhi Hu,¹ Chen Shen,¹ He Wang,² Zhiping Wang,¹

Qianqian Lin,¹ Guojia Fang,¹ Sheng Wang,¹ Chang Liu,¹ Zengming Zhang,² Jianmin Li,^{1*}

Xudong Xiao1*

1. School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nanostructures of Ministry of Education, Wuhan University, Wuhan 430072, China.

2. The Center for Physical Experiments, School of Physics Science, University of Science and Technology of China, Hefei 230026, China

[‡]These authors contributed equally.

Corresponding authors: Junbo Gong (<u>gongjunbo@whu.edu.cn</u>), Jianmin Li (<u>ljmphy@whu.edu.cn</u>), Xudong Xiao (<u>xdxiao@whu.edu.cn</u>)

Supplementary Figure 1. Comparison of PI and PDI surface treatments. a-d, Statistical boxplot of PCE (a), V_{oc} (b), FF (c) and J_{sc} (d) for six groups of PSC samples: Control, PDI, PI, CI, CI+PDI, and CI+PI. The mean value, maximum and minimum values, and 25%-75% region of data was represented by the open circle, top and bottom bars, and rectangle, respectively. Unlike the work by Li *et al.*,¹ who discovered that PI is better than PDI to passivate the surface of normal bandgap perovskite films, in this work, we found PDI is better than PI to boost the performance of wide bandgap perovskite solar cells. **e**, The *EQE* spectra

and the corresponding integrated J_{sc} of the representative devices from Control, PDI, Cl, and Cl+PDI groups. f, Absorption spectra of the representative perovskite films from Control, PDI, Cl, and Cl+PDI groups.

Supplementary Figure 2. Film morphology and grain statistics. Top view SEM images of representative perovskite films from the four groups: **a**, **Control**, **b**, **PDI**, **c**, **Cl**, **d**, **Cl+PDI**. The insets in the respective images show the statistics of the grain size distribution.

Supplementary Figure 3. Uniformity of fluorescence lifetime images. **a-d**, Fluorescence lifetime image microscopy of representative perovskite films from the four groups. Insets are the corresponding zoom-in images.

Supplementary Figure 4. Reproducibility measurement for defect passivation effect. a-b, CV profiling for Control and Cl+PDI. c-d, DLCP profiling for Control and Cl+PDI. e, Photoconductivity transients measured by TRMC for Cl and Cl+PDI.

Supplementary Figure 5. Deduction of diode reverse saturation current density J_{θ} . The *J*-

V curves measured under (a) AM 1.5G light illumination and (b) in dark respectively. The J_0

values were obtained by fitting the J-V curves with
$$J = J_L - J_0 \left[exp\left(\frac{V + JR_s}{nkT}\right) - 1 \right] - \frac{V + JR_s}{R_{sh}}.$$

Supplementary Figure 6. Device stability test. a, The long-term storage stability in N_2 atmosphere. b, The steady power output (SPO) under 1-sun illumination measured at 25°C, 50% RH in air for 10 minutes.

Supplementary Figure 7. Reproducibility measurement for device stability. Operational stability of devices from the four groups under MPP tracking with continuous illumination at 50 °C in N₂ atmosphere.

Supplementary Figure 8. Thermal admittance spectroscopy. Plot of $-\omega dC/d\omega$ vs frequency at various temperatures: **a**, Control device, **b**, PDI device, **c**, CI device, and **d**, CI+PDI device.

Supplementary Figure 9. Structure of a semi-transparent perovskite solar cell. Different color code in the cross-sectional SEM image labeled different layers of materials in the device.

Supplementary Figure. 10. The effect of Cl incorporation and PDI treatment on ST-PSC

devices. Comparison of ST-PSC devices before and after perovskite optimization.

Supplementary Figure 11. Transmittance spectra in air. Two spectra of the highly efficient semitransparent perovskite solar cells with either ITO or IZO as the contact electrodes. The PSC-IZO clearly showed a better transmittance in the infrared region.

Supplementary Figure 12. Comparison of EQE spectra. The EQE spectra of CIGS solar cells with different bandgaps. The inset showed the edges of the long wavelength response, from which the bandgap of CIGS could be evaluated.

Supplementary Figure 13. a, Schematic of the 4-T PSC/CIGS tandem solar cell. Index matching fluid was applied between the two sub-cells to reduce reflection therein. **b**, Current density-voltage curves based on 1.14 eV-CIGS, **c**, EQE spectra of the tandem cell based on 1.14 eV-CIGS.

Supplementary Table 1. Carrier lifetime measured by TRPL decay curves. The fitting parameters with a bi-exponential decay equation are listed below.

	A_1	τ_1 (ns)	A_2	τ_2 (ns)	$\tau_{vag}(ns)$
Control	48%	35	52%	122	80
PDI	32%	41	68%	83	69
Cl	52%	49	48%	172	108
Cl + PDI	21%	73	79%	255	216

		-				
Yearref	Bandgap (eV)	Configuration	Current density (mA/cm ²)	Voltag e (V)	FF (%)	PCE (%)
2017 ²	1.73	TiO ₂ /Perovskite/ PTAA/MoOx/ITO	19.4	1.12	73.0	15.9
2018 ³	1.55	CuSCN/Perovskite/ PCBM/ ZnO:Al-NP/AgNW	21.0	1.01	74.1	17.1
20184	1.72	SnO ₂ /Perovskite/ Spiro-OMeTAD/ MoO _x /ITO	15.4	1.22	73.4	13.8
20195	1.68	ITO/PTAA/ Perovskite/C ₆₀ / SnO _x /Zn:SnO _x (ZTO)/IZO	19.6	1.14	76.8	17.1
2019 ⁶	1.67	ITO/PolyTPD/ Perovskite/LiF/C ₆₀ / SnO/ZTO/ITO	19.1	1.21	80.2	18.6
20197	1.72	ITO/TiO ₂ /Perovskite/ Spiro-MeOTAD/ MoO _x /IZO	18.0	1.21	78.9	17.1
2019 ⁸	1.55	ITO/NiO _x /Perovskite/ PCBM/ZnO-NP/ BCP/IZRO	19.8	1.01	78.0	15.6
2020 ⁹	1.63	IZrO/SnO ₂ /Perovskite /Spiro-OMeTAD/ MoO ₃ /IZO/MgF ₂	22.3	1.12	77.7	19.4
202010	1.55	TiO ₂ /Perovskite/ Spiro-OMeTAD/ Au/MoO _x	19.8	1.16	79.9	18.3
202111	1.50	ITO/SnO ₂ /Perovskite/ Spiro-OMeTAD/ Cr/Au/MgF ₂	21.9	1.13	79.7	19.8
202212	1.75	FTO/SnO ₂ /Perovskite/ Spiro-OMeTAD/ Au/MoO _x /ITO	17.53	1.21	80.1	17.0
2022 ¹³	1.77	ITO/SnO ₂ /Perovskite/ Spiro-OMeTAD/ MoO _x /IZO/MgF ₂	18.8	1.24	79.6	18.6
202214	1.60	ITO/PTAA/Perovskite /PCBM/ZnO/ITO	22.2	1.11	71.4	17.6

Supplementary Table 2. Summary of semi-transparent PSCs. Photovoltaic parameters of semi-transparent PSCs reported in recent years. * marked the certified results.

2022 ¹⁵	1.65	SnO ₂ /Perovskite/ Spiro-OMeTAD/ MoO _x / ITO	19.6	1.23	78.7	18.9
This work*	1.67	ITO/Poly-TPD/ Perovskite/C ₆₀ /SnO _x / IZO	19.0	1.20	82.9	18.7

Supplementary Note 1. Certified performance of a Cl + PDI opaque device after stored at N₂ atmosphere for 92 days. This opaque PSC device with PCE of 19.7% ($V_{oc} = 1.192$ V, $J_{sc} = 20.73$ mA/cm², FF = 79.59%) measured in house was sent to Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science for third party certification. The certified PCE of 20.0% ($V_{oc} = 1.205$ V, $J_{sc} = 20.92$ mA/cm², FF = 79.51%) was obtained.

御 * 御 *

====== Normalized External Quantum Efficiency Curve =======

Report No.22TR012501

Report No.22TR012501

Supplementary Note 2. The certification report for a semi-transparent PSC (ST-PSC). Notably, this semi-transparent PSC-IZO was sent to Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science for third party professional organization certification. The ST-PSC measured with PCE of 19.07% (V_{oc} = 1.20 V, J_{sc} = 19.48 mA/cm², FF = 81.56%) in house was certified to have a PCE of 18.74% ($V_{oc} = 1.199$ V, $J_{sc} = 18.89 \text{ mA/cm}^2$, FF = 82.89%). As far as we know, this is the highest reported efficiency for wide-bandgap (> 1.65 eV) semi-transparent PSC.

Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences (SIMIT) 235, Chengbei Road, Jiading, Shanghai, China

Measurement Report

Client Name	Junbo Gong and Xudong Xiao' Group, Wuhan University					
Client Address	Wuhan University, 299 Bayi Road, Wuchang District, Wuhan, Hubei Province					
Sample	Semitransparent perovskite solar cell					
Manufacturer	Junbo Gong and Xudong Xiao' Group, Wuhan University					
Application	SIMITL72022071301					
Measurement Date	13 th July, 2022					
Performed by:	Qiang Shi Qiang Shi Qiang Shi					
Reviewed by:	Wergre show Date: 151 月前時間章					

100

Vehjie Zhao

sherig Xan

Zhengxin Liu The measurement report without signature and seal are not valid. This report shall not be reproduced, except in full, without the approval of SIMIT.

I-V Curve

Reviewed by:

Approved by:

Report No.22TR071301

100						0.1000	
Sample Type		184	Semitransparent perovskite solar cell				
Serial No.					1#		
Lab Internal N	No.			2207	1301-1#		-
Measuremen	t Item			I-V cha	racteristic		27
Measuremen	t Environment			25.2±2.0°C,	43.6±5.05	6R.H	
N 11						S.	
Measureme	nt of I-V char	acterist	ic				
Reference ce	I	F	VM1124				
Reference ce	ll Type	n	nono-Si, WP	/S, calibrated	by NREL (IS	60 2045)	
Calibration Calibration fo	Value/Date or Reference of	of 1	44.9mA/ Au	g. 2021			
Measuremer	t Conditions	s	TC, linear sw	eep based on	IEC 60904	-1:2006	
Measuremer of Calibration	nt Equipment/	Date S	ate Steady State Solar Simulator (YSS-T155-2M) / July 20 IV test system (ADCMT 6246) / June. 2022 SR Measurement system (CEP-25ML-CAS) / April.202				
Mismatch Fa	ctor	5	MM=0.9896				
Serial Number	Scan Mode	Area ^{*(} (cm ²	^{de)} Isc) (mA)	Voc (V)	Pmax (mW)	FF (%)	Eff (%)
2	Isc to Voc	0.070	4 1.33	1.196	1.308	82.40	18.57
1#	Voc to Isc	0.070	4 1.33	1.199	1.319	82.89	18.74
Supplementa	iry information	n: *(da), [Designated a	rea defined b	y thin meta	l aperture	mask.
īest results lis	ted in this mea	suremen	t report refer	exclusively to	the mentio	ned test sa	mple.
The resul	ts apply only at	the time	of the test, a	ind do not imp	ly future pe	erformance	
port No.22TF	8071301						2/4
		Low					

1 will me and

Report No.22TR071301

Date: 2022.7. 18

1/4

13 th July,2022		Date:	13 th J	uly,2022	
IV_22071301-1#_D		Data No:	IV_22071301-1		
	1#	Serial No:		1#	
0.0704	cm ²	Area ^{da}	0.0704	cm ²	
1,33	mA	Isc	1.33	mA	
1.196	v	Voc	1.199	V	
1.308	m₩	Pmax	1.319	mW	
1.27	mA	Ipm	1.28	mA	
1.030	V	Vpm	1.034	V	
82.40	%	FF	82.89	%	
18.57	%	Eff	18.74	%	
100	mW/cm ²	Dirr.	100	mW/cm ²	
100	mW/cm ²	Mirr.	100	mW/cm ²	
Isc	to Voc	Scan Mode	Vo	c to Isc	

Ref. Device No Cal. Val. of Ref.

Voc to Isc PVM1124 144.9mA at 100mW/cm²

====== Normalized External Quantum Efficiency Curve =======

Supplementary Note 3: Certified performance of CIGS device. A CIGS solar cell with house measured PCE of 18.25% ($V_{oc} = 0.607 \text{ V}$, $J_{sc} = 39.75 \text{ mA/cm}^2$, FF = 75.60%) was certified with a PCE of 18.38% ($V_{oc} = 0.606 \text{ V}$, $J_{sc} = 39.48 \text{ mA/cm}^2$, FF = 76.87%) by Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science.

Measurement Report

Client Name	Junbo Gong and Xudong Xiao's Group, Wuhan University				
Client Address	Wuhan University, 299 Bayi Hubei Province	Road, Wuchang District, Wuhan,			
Sample	CIGS solar cell				
Manufacturer	Junbo Gong and Xudong Xia	o's Group, Wuhan University			
Application	SIMITL72022091001				
Measurement Date	13 th September, 2022	AND			
Performed by:	Qiani Shi	Date: 19 2022			
Reviewed by:	Wengre Shoo Wenjie Zhao	Late: ۲۰۶۱۶،			
Approved by:	Thengrin In Zhengxin Liu	Date: 13/09/2022			

The measureme	ent report without signature and seal are not valid. This report shall not be
	reproduced, except in full, without the approval of SIMIT.

Report No.22TR091301 1/4

Sample Information							
Sample Type	CIGS solar cell						
Serial No.			1#				
Lab Internal No.			22091301-1	ŧ			
Measurement Item		1-3	/ characteris	tic	20		
Measurement Environment		24.6±2	.0°C, 33.6±	5.0%R.H	200		
				1			
Measurement of I-V characteris	stic						
Reference cell	AK-200		. Sec.				
Reference cell Type	mono-Si, WPVS, calibrated by National Institute of Metrology, China (Certificate No. GXgf2022-01035)						
Calibration Value/Date of Calibration for Reference cell	128.1mA/ Apr. 2022						
Measurement Conditions	STC, line	ar sweep bas	ed on IEC 60	904-1:2006			
Measurement Equipment/ Date	Steady State Solar Simulator (YSS-T155-2M) / July.2022 IV test system (ADCMT 6246) / June. 2022						
Mismatch Factor	SMM=1.0071						
2 CON					183		
Serial Area ^{*(t)} Number (cm ²)	lsc (mA)	Voc (mV)	Pmax (mW)	FF (%)	Eff (%)		
		COT CO	0.212	75.97	18 38		

Test results listed in this measurement report refer exclusively to the mentioned test sample The results apply only at the time of the test, and do not imply future performance.

Report No.22TR091301

Report No.22TR091301

Supplementary Note 4: Certified performance of filtered CIGS device. A filtered CIGS subcell with house measured PCE of 9.30% ($V_{oc} = 0.604 \text{ V}$, $J_{sc} = 20.33 \text{ mA/cm}^2$, FF = 75.60%) was certified with a PCE of 9.35% ($V_{oc} = 0.610 \text{ V}$, $J_{sc} = 20.33 \text{ mA/cm}^2$, FF = 75.38%) by Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science.

G MT		Smit	Report No. 23TR060104
中国4 新能 Test and Calibration C and Ir	特子院工作版示統与信息技术初分的 認識器件与组件标准测试与校准中心 enter of New Energy Device and Module, Shanghai Institute of Microsystem formation Technology, Chinese Academy of Sciences (SIMIT) 辺 武 报 告 Test Report 报告编号: <u>23TR060104</u> Report No.	声 1、 检测报告读改、增删、缺页无效。 This report is invalid if it is altered, added, 2、 未经本中心书面同意。不得感分复 This report shall not be reproduced, excer 3、 检测报告无编制人、电核人、授权 This report is invalid without the signature 4、 本根告未知童中心公章和骑徒奉死	明 Statements deleted or missing page. 漸(全文复制隊外)检測报告。 pt full, without the approval of SIMIT. 空学人参学天弦。 e of the person who performed, reviewed or approved it. 淡。
委托单位: Client 单位地址: Client Address 检测对象: Sample 生产厂家: Manufacture	Junbo Gong and Xudong Xiao's Group, Wuhan University 299 Bayi Road, Wuchang District, Wuhan, Hubei Province Short-circuited Perovskite Filtered CIGS Cell Junbo Gong and Xudong Xiao's Group, Wuhan University	This report is invalid without seal and cros 5、如对本检测报告内容有异议,应于 本报告无异议。 If any objection to the content of this report from the date of receiving this report, oth 6、本声明有中英文简称语言,如有任 This statement is made in both Chinese an 7、未趁太中心同意,任何单位和个人 Without the approval of SIMIT, no unit or i	s stitch seal. 收到检测报告之日起 15 天府向我单位提出书面意见,否则被作对 rt, please put forward written requirement to our company within 15 days erwise it will be deemed that you have no objection to this report. 河分歧, 以中文语言方准。 时后 fish. In case of any discrepancy, the Chinese language will prevail. 不得以太中心名义和太松跟棋告作商业"告。 ndividual may make commercial advertisements in the name of the center
测试/Performed by: 审核/Reviewed by: 批准/Approved by:	日期/Date:2012/06/01 37316 日期/Date:2012/06/01	and the test report. 8、 凡仿造本中心检测报告,作虚彀J Anyone who falsifies the test report of t responsibility by SIMIT.	告,本中心将追究法律责任。 he center and makes false advertisements will be investigated for legal
地址:上海市嘉定区域 Address: No.235 Chengt 邮箱/E-mail: solarcell@	北路 235 号 邮稿/Post Code:201800 sei Road, Jiading, Shanghai mail.sim.ac.cn 电话/Tel: +86-021-69976921 1 / 4		2/4

Supplementary Note 5:

Suppression of J_{sc} by PDI surface treatment and its recovery in CI+PDI samples

A side story is about the current decrease in **PDI** devices, this requires information on the band alignments and work functions. To explore the effect on band alignment by the Cl incorporation and the PDI treatment, the energy levels of the four groups of perovskite films were measured by ultraviolet photoelectron spectroscopy (UPS). The obtained spectra and the corresponding schematics of the energy band edge positions were shown in Supplementary Fig. 14. As observed, with respect to the Fermi level, the Cl incorporation caused a slight upward shift of ~ 50 meV for both the conduction and valence band while the PDI treatment led to a downward shift of ~ 120 meV for both bands. For the Cl + PDI group samples, their conduction and valence band edges were located between those of PDI and Cl groups but were slightly lower than those of the **Control** group samples. According to the Anderson rule by

keeping the Fermi level constant along the entire solar cell structure, the band bending in the devices could be constructed as shown in Supplementary Fig. 15. It was important to note that the PDI treatment primarily affected the surface of the perovskite films. Adding such a thin PDI treated layer would effectively make the transport of both electrons and holes between the bulk absorber and the ETL layer smoother if only the conduction and valence band edge positions were considered. However, once the alignment of vacuum levels was examined, interesting features occurred. For the PDI sample, considering that the thin PDI treated layer had a relative higher work function than that of the bulk absorber (same as that of Control sample, Supplementary Fig. 15) by ~210 meV, there would result in an interfacial electric diploe field with a direction running from the bulk absorber to the PDI treated layer.¹⁶ This electric field formed an energy barrier of ~210 meV in magnitude with the conduction band bending upwards for electron transport from bulk absorber to the PDI treated surface. This energy barrier was presumably responsible for the observed Jsc decrease of the corresponding device as also discussed in literature.¹⁷ In contrast, the work functions of the Cl and Cl + PDI samples were similar to that of Control sample and no barrier was expected to form for the electron transport, thus the resultant Jsc was comparable among the corresponding devices. In particular, the work function of the Cl + PDI surface layer was even reduced from that of Cl sample by ~ 80 meV, leading to a descending order of vacuum level from the Cl incorporated absorber layer to the CI +PDI surface layer and to the ETL layer. The consequently formed electric fields at both Cl/Cl+PDI and Cl+PDI/ETL interfaces resulted in downward band bending and were along the right direction to promote electron and hole transport (Supplementary Fig. 15). In this way, the observed significant decrease of J_{sc} in **PDI** samples was well explained by the large work function of PDI treated layer.

Supplementary Figure 14. UPS results and energy levels. a-b, UPS spectra of representative perovskite films from the four groups. The light source is He-I with photon energy of 21.2 eV. c, The work function and the conduction and valence band edge positions with respect to the Fermi level for Control, PDI, Cl, Cl + PDI samples determined by UPS spectra. The conduction band minima are calculated from the valence band maxima with the bandgap values for perovskite films obtained in Suppl. Fig 1f and for C₆₀ and TPD taken from Refs.^{18, 19}.

Supplementary Figure 15. Band alignment and band bending. Energy level diagram for Control, PDI, Cl, Cl + PDI devices constructed in accordance to the Anderson rule. The width of each layer is not in scale with the real material. Due to the work function difference, there forms an energy barrier of ~210 meV for electron transport from bulk perovskite to PDI treated surface in the case of PDI device.

Fortunately, the PDI treatment on the Cl incorporated absorber surface did not generate such an energy barrier and the beneficial effect of surface defect passivation by PDI was realized for V_{oc} without sacrificing J_{sc} . To further investigate why the **PDI** sample possessed a relatively high work function, high-resolution X-ray photoelectron spectroscopy (XPS) was performed. As shown in Supplementary Fig. 16, the C 1s binding energies at 284.8, 286.8, 288.2 eV were assigned respectively to the C-C bond (from FA and PDI), the characteristic peak of PDI, and the C=O. Oxidized carbon species might originate from the oxidation of the perovskite films when exposed to ambient environment before measurement. Interestingly, the peak area of C=O showed a visible decrease after either PDI treatment or Cl incorporation, implying a suppressed oxidization and improved film stability by the according treatments. The

peaks appearing at around 286.8 eV in the C 1s spectra (Supplementary Fig. 16a) and 402.3 eV in the N 1s spectra (Supplementary Fig. 16b) were attributed to the C-N bonds in the sixmembered ring of PDI, which clearly verified the existence of PDI. The featured bond of C-N(FA) slightly shifted to higher binding energies after either PDI treatment or Cl incorporation. This shift may originate from the interaction between FA⁺ and R₂NH₂⁺ from PDI. In the Pb 4f spectra shown in Supplementary Fig. 16c, the binding energies at 143.1 and 138.3 eV were assigned to $4f_{5/2}$ and $4f_{7/2}$ of divalent Pb²⁺, respectively. These peaks slightly moved to higher binding energy only after Cl incorporation in terms of bond formation of Pb-Cl. From Supplementary Fig. 16 and in Supplementary Table 3, after PDI treatment, we observed an increased signal of C-C (FA+PDI) by ~26-31% due to the increased C density in PDI against perovskite, a decreased signal of Pb 4f by ~12-20% due to the absence of Pb in the PDI layer. The above increase of C 1s signal and decrease of Pb 4f signal are consistent with a ~ 2 nm PDI layer covered on the perovskite film even taking into account of electron energy dependent attenuation length, but the strongly decreased N 1s (FA) signal by ~35-38% indicated a net drop of N-C (FA) signal beyond the attenuation effect (~21%). Thus, PDI molecules would occupy some vacancies of the FA⁺ ions at the surface of perovskite films. Compared to the original surface, the replacement of FA⁺ by neutral PDI molecules and the filling of V_{I}^{+} vacancies by neutral PDI molecules might effectively make the surface more charge negative, leading to the formation of an effective electric dipole layer pointing towards the bulk of perovskite layer. This effective electric dipole layer was suggested to induce the observed work function increase in the PDI samples.

Supplementary Figure 16. High-resolution XPS and XRD spectra of perovskite films. a,

C 1s XPS spectra, **b**, N 1s XPS spectra, **c**, Pb 4f XPS spectra, **d**, XRD patterns.

	C-C (FA+PDI)	N-C (FA)	$Pb^{2+}4f_{5/2}$
Control	10213	9031	51769
PDI	12880	5620	45728
Cl	9382	7291	60944
Cl + PDI	12332	4708	48604

Supplementary Table 3. Peak area of corresponding XPS spectra.

While the above picture could well explain the work function increase for **PDI** samples, it encountered difficulty with the **CI+PDI** samples. To identify the role of Cl incorporation, the fabricated perovskite films was further studied by XRD. As shown in Supplementary Fig. 16d, the XRD peak at 12.6° revealed the existence of PbI₂ phase in the **CI** and **CI + PDI** samples in contrast to its absence in the **Control** and **PDI** samples. Although no excessive PbI₂ was used in the precursors, the formation of PbI₂ trace phase on the surface of perovskite containing Cl, as also observed by other groups,^{6, 21} seemed to imply that species such as FAPb(I₂Cl) might decompose into PbI₂ and FACl, and the latter might be vaporized away to leave only PbI₂ on the surface.

Our previous work²² as well as others' work^{6, 21, 23} have shown that a small amount of PbI₂ on the surface was beneficial to passivate defects at grain boundaries and surfaces and thus helped the improvement of device performance. We speculated that PbI₂ might in addition play a role on regulating the work function of perovskite surface layer. Considering that iodine deficiencies are highly likely to exist in the remnant PbI₂ layer on perovskite,²⁴ these iodine deficiencies with positive effective positive charge, V_1^+ , should result in the formation of an effective electric dipole layer pointing towards the surface of perovskite layer, which was opposite to the dipole direction formed on the surface of **PDI** samples and could be responsible for the observed work function decrease in the **Cl** and **Cl+PDI** samples. On the whole, it was possible that the effective charges induced by PbI₂, to reduce the work function, and by PDI, to increase the work function, would neutralize to certain extent and the work functions **Cl + PDI** samples could become lower than that of **PDI** samples.

References:

- F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin and S.-H. Jang, J. Am. Chem. Soc. 2020, 142, 20134-20142.
- T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E. C. Wang, T. C. Kho, K. C. Fong and M. Stocks, *Adv. Energy Mater.* 2017, 7, 1700228.
- C. O. R. Quiroz, Y. Shen, M. Salvador, K. Forberich, N. Schrenker, G. D. Spyropoulos, T. Heumüller, B. Wilkinson, T. Kirchartz and E. Spiecker, *J. Mater. Chem. A* 2018, 6, 10149-10149.
- 4. M. Jaysankar, B. A. Raul, J. Bastos, C. Burgess, C. Weijtens, M. Creatore, T. Aernouts, Y. Kuang, R. Gehlhaar and A. Hadipour, *ACS Energy Lett.* 2018, 4, 259-264. *ACS Energy Lett.* 4, 259-264 (2018).
- 5. Kim, D.H. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. *Joule* **3**, 1734-1745 (2019).
- J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey and E. J. Wolf, *Science* 2020, 367, 1097-1104.
- T. Duong, H. Pham, T. C. Kho, P. Phang, K. C. Fong, D. Yan, Y. Yin, J. Peng, M. A. Mahmud and S. Gharibzadeh, *Adv. Energy Mater.* 2020, 10, 1903553.
- E. Aydin, M. De Bastiani, X. Yang, M. Sajjad, F. Aljamaan, Y. Smirnov, M. N. Hedhili, W. Liu, T. G. Allen and L. Xu, *Adv. Funct. Mater.* 2019, 29, 1901741.
- B. Chen, S.-W. Baek, Y. Hou, E. Aydin, M. De Bastiani, B. Scheffel, A. Proppe, Z. Huang, M. Wei and Y.-K. Wang, *Nat. Commun.* 2020, 11, 1257.
- Z. Wang, X. Zhu, S. Zuo, M. Chen, C. Zhang, C. Wang, X. Ren, Z. Yang, Z. Liu and X. Xu, *Adv. Funct. Mater.* 2020, **30**, 1908298.
- D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye, J. Yoon, C. Wu, M. Sanghadasa, S. F. Liu and S. Priya, Nano Energy, 2021, 84, 105934.
- C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu and D. Zhao, *Nat. Energy* 2022, 7, 744-753.
- Y. Yao, P. Hang, B. Li, Z. Hu, C. Kan, J. Xie, Y. Wang, Y. Zhang, D. Yang and X. Yu, *Small*, 2022, 18, 2203319.
- 14. L. Yan, S. Qiu, B. Yu, J. Huang, J. Qiu, C. Zhang, F. Guo, Y. Yang and Y. Mai, *Advanced Energy and Sustainability Research* 2022, **3**, 2100199.
- G. S. Jang, Y. Kim, Y. Y. Kim, J. J. Yoo, G. Kim, N. J. Jeon, H.-S. Lee, D. Kim and J. Seo, *Sol. RRL* 2022, 6, 2200252.
- M. A. Martínez-Puente, J. Tirado, F. Jaramillo, R. Garza-Hernández, P. Horley, L. G. Silva Vidaurri, F. S. Aguirre-Tostado and E. Martinez-Guerra, ACS Appl. Energ. Mater. 2021, 4, 10896-10908.
- X. Zhuang, R. Sun, D. Zhou, S. Liu, Y. Wu, Z. Shi, Y. Zhang, B. Liu, C. Chen and D. Liu, *Adv. Funct. Mater.* 2022, **32**, 2110346.
- C. Liu, Y. Yang, C. Zhang, S. Wu, L. Wei, F. Guo, G. M. Arumugam, J. Hu, X. Liu and J. Lin, *Adv. Mater*. 2020, **32**, 1907361.
- Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes and B. P. Rand, *Nat. Photonics* 2017, 11, 108-115. *Nat. Photonics* 11, 108-115 (2017).
- J. Yang, S. Xiong, J. Song, H. Wu, Y. Zeng, L. Lu, K. Shen, T. Hao, Z. Ma and F. Liu, *Adv. Energy Mater*. 2020, 10, 2000687.
- F. Jiang, Y. Rong, H. Liu, T. Liu, L. Mao, W. Meng, F. Qin, Y. Jiang, B. Luo and S. Xiong, *Adv. Funct. Mater.* 2016, 26, 8119-8127.
- 22. X. Liu, Z. Wu, X. Fu, L. Tang, J. Li, J. Gong and X. Xiao, Nano Energy, 2021, 86, 106114.
- 23. J. Euvrard, O. Gunawan and D. B. Mitzi, Adv. Energy Mater. 2019, 9, 1902706.

24. H. Chen, H. Yan and Y. Cai, *Chem. Mat.* 2022, **34**, 1020-1029.