The nature and suppression strategies of interfacial reactions in all-

solid-state batteries

Fucheng Ren,^a Ziteng liang,^b Wengao Zhao,^c Wenhua Zuo,^d Min Lin,^b Yuqi Wu,^a Xuerui Yang,^a Zhengliang Gong,^{* a} and Yong Yang^{* a, b}

^a College of Energy, Xiamen University, Xiamen 361102, China. E-mail: yyang@xmu.edu.cn

^b State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China

^c Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany ^d Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA

Interface stability

The Chemical Stability between sulfide solid electrolytes (SSEs) and cathode/coating was estimated by the thermodynamic approximation method. The SSEs-cathode/coating interface can be assumed as a pseudo-binary system (A: SSEs, B: cathode/coating), equation 1.

$$C_{interface}(c_A, c_B) = x c_A + (1 - x)c_B$$
(1)

Where x is the molar fraction of SSEs, and c_A and c_B are the specific composition of SSEs and cathode/coating. The total energy of pseudo-binary interface is described as the liner combination

of SSE and cathode/coating, equation 2. $E(c_A)$ and $E(c_B)$ are the ground state energy of SSE and cathode/coating, respectively.

$$\Delta E_{interface}(c_A, c_B, x) = x E(c_A) + (1 - x)E(c_B)$$
⁽²⁾

The mutual reaction energy $\Delta E_{D,mutual}(c_A, c_B, x)$ can be calculated by constructing a pseudo-binary phase diagram between SSE and cathode/coating and determining the ratio (*x*) that result in the most negative mutual reaction energy, equation 3:

$$\Delta E_{D,mutual}(c_A, c_B, x) = \min_{x \in [0,1]N} \frac{1}{N} [E_{eq, interface}(xc_A + (1-x)c_B) - xE_D(c_A) - (1-x)E_D(c_B)]$$

(3)

Here, $E_{eq, interface}$ is the reaction energy of the pseudo-binary phase, $E_D(c_A)$ and $E_D(c_B)$ are the decomposition energy of SSE and cathode/coating. N is the number of atoms involved in the phase equilibrium used to normalization.

The Electrochemical Stability of the SSE/cathode interface was evaluated by inducing the extra applied Li chemical potential $\mu^{open,\emptyset}_{Li}$:

$$\mu^{open,\emptyset}_{Li} = \mu^0_{Li} - e\emptyset$$
 (4)

 μ^0_{Li} and Ø are chemical potential of Li metal and the applied potential referenced to Li metal.

The mutual electrochemical reaction energy $\Delta E_{D, mutual}(c_A, c_B, x, \phi)$ between SSE and cathode can be calculated by the following equation:

$$\Delta E_{D, mutual}^{\phi}(c_A, c_B, x, \phi) = \min_{x \in [0,1]} \frac{1}{N_{gc}} [E_{eq}^{\phi}(xc_A + (1-x)c_B) - xE_D^{\phi}(c_A) - (1-x)E_D^{\phi}(c_B)]$$

(5)

It should be noted that the normalization factor N_{gc} in eq 5, unlike N in eq 3, is the total number of atoms excluding Li.

The applied chemical potential of μ_{Li} at fully ($\mu^{open,F}_{Li}$) and half ($\mu^{open,H}_{Li}$) lithiated state of specific cathode materials are different from each other and determined by calculating the Li chemical window of each cathode at fully and half lithiated state shown in Fig S2a. $\mu^{open,F}_{Li}$ refers to the lowest

chemical potential (corresponding to the highest applied voltage) that the fully-lithiated cathode would not be reduced and $\mu^{open,H}_{Li}$ refers to the highest chemical potential (corresponding to the lowest applied voltage) that half-lithiated cathode would not be oxidized. The specific value of $\mu^{open,F}_{Li}$ and $\mu^{open,H}_{Li}$ for each cathode is listed in Fig. S2b.

Conductivity of interphase layer

The electronic conductivity of the interface layer greatly influences the cyclability of ASSBs. Experimentally, it is extremely difficult to measure the electronic conductivity of a paper-thin and berried interphase layer between cathode and SSE. By analyzing the phase equilibrium between cathode and sulfide solid electrolytes (SSEs), plenty of transition-metal sulfides (M_xS_v, M: Ni, Co, and Mn) are formed at interface. All these M_xS_y possess zero Kohn-Sham band gap as an electronic conductor in the interphase layer, providing the electron conducting net for electrochemical reaction between cathodes and SSEs. It has been proved that a low band gap almost certainly leads to some electronic conductivity.¹ Hence, the percentage of molar fraction (f) of these electronically conductive species with the Kohn-sham band gap < 0.5 eV in all interphases formed at interface are calculated which can effectively reflect the electronic conductivity of the interphase layer. For $x \in [0,1]$ in eq 3 and eq 5, there are several possible phase equilibriums between SSEs and cathodes/coatings. For example, table S2 lists all possible phase equilibriums between LCO and Li₃PS₄ at fully/half-lithiated of cathode, as well as at chemical potential of μ_{Li} at fully/half-lithiated state of LCO (corresponding to the applied voltage). Table S3 lists the Kohn-Sham band gaps of all possible products. For each phase equilibrium between LCO and Li₃PS₄ listed in **table S2**, the percentage of molar fraction (f_i) of electronically conductive species with the Kohn-sham band gap < 0.5 eV in all products was calculated (excepting Li metal in the electrochemical reaction which can be regarded as plating at anode side). Hence, there is a specific f_i values for each equilibrium (f_1, f_2, \dots, f_n, n is the number of phase equilibriums listed in **Table S2**) and then an average of f_1, f_2, \dots and f_n was performed to obtain the final f as the descriptor to evaluate the electronic conductivity of the interface layer. The bigger f means the better electronic conductivity of interface layer, and the severe electrochemical reactions occur between cathodes and SSEs

Geometric analysis

The transport characteristics of Li-ion are highly correlated to the crystal structures. The crystal space of selected structures can be divided into two aspects: space of atoms and interatomic voids.² Since the size of interatomic voids is critical for Li conduction, CVAD (Crystal structure Analysis by Voronoi Decomposition)³ was used to characterize the void spaces and construct the net of interstices in the immobile framework of selected candidates. This code has been widely used to identify the fast ion conductors.⁴⁻⁸ The threshold of ion that can pass through a, b and c direction of crystal structure is calculated and listed in **table S7**.

BVSE calculations

The Bond Valence Site Energy (BVSE) model is an effective approach to identify ionic transport channels and calculate the migration energy barrier which is suitable to be used in the high-throughput screening scheme due to its low computational cost.^{4, 9, 10} BVSE method is an extension of Bond valence Sum (BVS) method by taking the Morse type potential term for cation-anion pairs and Coulomb repulsions between mobile ion and ions with the same charge sign into consideration. The BVS method is based on the principle of the local electroneutrality that the ion oxidation state should be close to the bond valence sum S_{M-X} defined by the following Equation:¹¹

$$S_{M-X} = e^{\frac{R_0 - R}{b}}$$
 (6)

where R_0 and b are constants depending on the type of ions M and X, R is the distance to the neighbor counter-ion. The transport channels can be identified as positions in the crystal structure with low bond valence mismatch.¹²⁻¹⁴ The BVSE model can be described as equation 7

$$BVSE = \frac{D_0}{2} \sum_{i} \left\{ (\exp\left[a(R_{min} - R)\right] - 1)^2 - 1 \right\} + \sum_{i=1}^{N} E_{coulomb}(M - M_i)$$
(7)

Where D_0 , a and R_{min} are Morse potential parameters determined from plenty of stable compounds. The Morse bond breaking energy of the same interaction in the energy landscapes of M and M_i would be double calculated, $\frac{D_0}{2}$ was used as a simple average method to prevent overestimating the migration. The Coulomb repulsions between two different cations in equation 7 are calculated by the following equation:

$$E_{coulomb}(M - M_i) = \frac{q_M q_{M_i}}{R_{M - M_i}} erfc \left[\frac{R_{M - M_i}}{f(r_M - r_{M_i})} \right]$$
(8)

Where q is the fractional charge of the interacting ions (M and $^{M_{i}}$), R is the bond distance between M and $^{M_{i}}$, erfc(x) is a complementary error function which has advantage of fast convergence compared with $\frac{1}{R}$ coulombic interaction, r refers to the covalent radius of the atom, and the

screening factor f is set to be 0.74 refers to an empirical quantity. By default, we set the cutoff radius for calculating the interactions to be 10 Å and 0.1 Å as the grid resolution.

Cell assembly and electrochemical characterization

Single crystal NCM811 without any modification treatment was mixed with LPS/LGPS/LPSCI (weight ratio: 7:3) by ball milling at 200 rpm for 1h as cathode materials. 100 mg LPS/LGPS/LPSCI was firstly pressed at 30 MPa to obtain SSEs layer, and the cathode composite was put on the one side. A piece of Li-In was put on the other side as anode. Finally, the cell was pressed at 600 MPa to ensure tight contact. During cycling, 50 MPa pressure was applied to the cell. The battery was tested with LAND CT-2001A (Wuhan, China) test system within 2.4 - 3.7 V vs. Li⁺/LiIn at different rate (1C = 200 mA g⁻¹) under room temperature (RT). The current density of the first three cycles is set to be cycled at 0.1 C and then increase to 0.3 C for testing the cycle performance of cells assembled with different composite cathodes (NCM811-LPS/LGPS/LPSCI)

Fig. S1 Electrochemical stability window of SSEs and coating commonly used at cathode side. The oxidation potential to fully delithiated the material is marked by the dashed line.

Fig. S2 Li chemical window of common cathodes (a), and applied chemical potential in fully ($\mu^{open,F}_{Li}$) and half ($\mu^{open,H}_{Li}$) lithiated of cathode (b).

Fig. S3 Chemical compatibility between polyanion cathodes and SSEs with the largest magnitude of chemical reaction energies (${}^{-\Delta E}_{D,mutual}$) of polyanion cathodes /SSEs interface in meV/atom. Chemical reaction energy in fully (a) and half lithiated state of cathodes (b).

Fig. S4 (a) The first charge and discharge curves of cells assembled with different composite cathodes NCM-LPS/LGPS/LPSCI at 0.1C (20 mA g^{-1}). (b) Cycle performance of the first 100 cycles at 0.3 C (60 mA g^{-1}).

Fig. S5 Percentage of molar fraction of the species with the Kohn-Sham band gap smaller than 0.5 eV in all interphases formed by the electrochemical reaction between $LiNi_{0.5}Mn_{1.5}O_4$ and $LiPO_2N$.

(a)											
			Ful	lly lithiat	ed catho	des			SS	Es	
		LCO	LNO	LMO	LNMO	NCM	LRO	Li ₃ PS ₄	LGPS	LPSCI	Li ₇ P ₃ S ₁₁
s	LiNbO ₃	0	0	0	69	43	42	143	123	164	181
ing	Li ₃ TaO ₄	0	0	6	1	63	0	47	48	99	89
coat	LiCoPO ₄	17	93	5	9	63	73	126	139	170	131
0	Li ₂ Ti ₃ CoO ₈	0	44	0	59	38	32	122	107	149	154
	Li ₃ PS ₄	402	598	347	220	407	461				
Es	LGPS	344	545	280	193	344	393				
SS	LPSCI	363	528	316	218	364	404				
	Li ₇ P ₃ S ₁₁	452	645	393	253	460	517				
(b)											
• •											
. ,			На	If lithiate	ed catho	les			SS	Es	
. ,		L _{0.5} CO	Ha L _{0.5} NO	lf lithiate	ed cathoo	les NCM	L _{0.5} RO	Li ₃ PS ₄	SS LGPS	Es LPSCI	Li ₇ P ₃ S ₁₁
<u>s</u>	LiNbO ₃	L _{0.5} CO 0	Ha L _{o.5} NO 0	lf lithiate L _{0.5} MO 29	ed cathoo L _{0.5} NMO 22	les NCM 0	L _{0.5} RO 145	Li ₃ PS ₄	LGPS	Es LPSCI 164	Li ₇ P ₃ S ₁₁ 181
ings	LiNbO ₃ Li ₃ TaO4	L _{0.5} CO 0	Ha L _{0.5} NO 0	L _{0.5} MO 29 46	ed cathoo L _{0.5} NMO 22 31	les NCM 0 32	L _{0.5} RO 145 94	Li ₃ PS ₄ 143 126	SS LGPS 123 139	Es LPSCI 164 170	Li ₇ P ₃ S ₁₁ 181 131
coatings	LiNbO ₃ Li ₃ TaO4 LiCoPO ₄	L _{0.5} CO 0 0	Ha L _{0.5} NO 0 0 68	lf lithiate L _{0.5} MO 29 46 0	ed cathoo L _{0.5} NMO 22 31 34	les NCM 0 32 32	L _{0.5} RO 145 94 191	Li ₃ PS ₄ 143 126 126	SS LGPS 123 139 139	Es LPSCI 164 170 170	Li ₇ P ₃ S ₁₁ 181 131 131
Coatings	LiNbO ₃ Li ₃ TaO4 LiCoPO ₄ Li ₂ Ti ₃ CoO ₈	L _{0.5} CO 0 0 0 5	Ha L _{0.5} NO 0 68 38	lf lithiate L _{0.5} MO 29 46 0 35	ed cathoo L _{0.5} NMO 22 31 34 15	les NCM 0 32 32 28	L _{0.5} RO 145 94 191 80	Li ₃ PS ₄ 143 126 126 122	SS LGPS 123 139 139 139	Es LPSCI 164 170 170 149	Li ₇ P ₃ S ₁₁ 181 131 131 154
Coatings	LiNbO ₃ Li ₃ TaO4 LiCoPO ₄ Li ₂ Ti ₃ CoO ₈ Li ₃ PS ₄	L _{0.5} CO 0 0 0 5 545	Ha L _{0.5} NO 0 0 68 38 805	lf lithiate L _{0.5} MO 29 46 0 35 429	ed cathoo L _{0.5} NMO 22 31 34 15 220	les NCM 0 32 32 28 526	L _{0.5} RO 145 94 191 80	Li ₃ PS ₄ 143 126 126 122	SS LGPS 123 139 139 107	Es LPSCI 164 170 170 149	Li ₇ P ₃ S ₁₁ 181 131 131 154
Es Coatings	LiNbO ₃ Li ₃ TaO4 LiCoPO ₄ Li ₂ Ti ₃ CoO ₈ Li ₃ PS ₄ LGPS	L _{0.5} CO 0 0 0 5 545 490	Ha L _{0.5} NO 0 68 38 805 761	Hf lithiate L _{0.5} MO 29 46 0 35 429 363	ed cathoo L _{0.5} NMO 22 31 34 15 220 194	les NCM 0 32 32 32 28 526 480	L _{0.5} RO 145 94 191 80 697 650	Li ₃ PS ₄ 143 126 126 122	SS LGPS 123 139 139 107	Es LPSCI 164 170 170 149	Li ₇ P ₃ S ₁₁ 181 131 131 154
SSEs Coatings	LiNbO ₃ Li ₃ TaO4 LiCoPO ₄ Li ₂ Ti ₃ CoO ₈ Li ₃ PS ₄ LGPS LPSCI	L _{0.5} CO 0 0 0 5 545 490 481	Ha L _{0.5} NO 0 68 38 805 761 751	If lithiate L _{0.5} MO 29 46 0 35 429 363 377	ed cathoo L _{0.5} NMO 22 31 34 15 220 194 222	les NCM 0 32 32 28 526 480 475	L _{0.5} RO 145 94 191 80 697 650 646	Li ₃ PS ₄ 143 126 126 122	SS LGPS 123 139 139 107	Es LPSCI 164 170 170 149	Li ₇ P ₃ S ₁₁ 181 131 131 154

Fig. S6 Chemical reaction energies (${}^{-\Delta E}_{D,mutual}$) of cathodes/SSEs and cathodes/coatings in fully (a) and half (b) lithiated state of cathode and coatings/SSEs.

	-																-
'H H-S-4.35			Binary sulfides and Kohn-Sham band											2He			
⁹ Li Li ₂ S-3.54 LiS ₄ -2.16	4 Be BeS-3.24		Binary sulfides E_hull < 5 meV/atom							g _B B ₂ S ₃ -2.43 BS ₂ -2.55	в _С CS ₂ -3.56 CS ₁₄ -2.70	7_N S ₇ N-0.65	80 SO3-5.15 SO2-3.20 S-0-2.42	ø _F	10 _{Ne}		
# _{Na} NaS ₂ -2.04 Na ₂ S-2.44 Na ₂ S ₅ -1.2 NaS-1.26	¹² Mg MgS-2.96 5 MgS ₂ -1.01		Alkali m Alkali e: Transiti	netals arth metals ion metals	Lanti Actin Post-	hanides ides transition m	netals	Metalloids Reactive non Halogens	metals	Noble gases		18 _{Al} Al ₂ S ₃ -3.24	#Si SiS2-3.39	10°P P ₂ S ₅ -2.58 P ₂ S ₇ -2.02 P ₄ S ₇ -2.71 P ₄ S ₇ -2.78 P ₄ S ₇ -2.89	105 5-2.74	7 CI	s _{Ar}
19K K ₂ S-2.31 K ₂ S ₅ -1.17	10 Ca CaS-2.48	#Sc Sc ₂ S ₃ -1.07 ScS-0.00	22Ti TiS ₂ -0.00 TiS ₃ -0.23 Ti ₅ S ₈ -0.00 Ti ₂ S ₃ -0.00 TiS-0.00	20V V2S5-0.47 VS2-0.00 V5S8-0.00 V3S4-0.00	₩Cr Cr ₃ S ₄ -0.00 Cr ₅ S ₈ -0.00	27 _{Mn} MnS ₂ -0.00 MnS-0.00	₽ _{Fe} FeS₂-0.98 FeS-0.00	27 _{C0} CoS ₂ -0.00 Co ₂ S ₃ -0.00 CoS-0.00 Co ₃ S ₄ -0.00 Co ₃ S ₄ -0.00	#Ni NiS2-0.19 NiS-0.00 Ni ₃ S4-0.00	20 _{Cu} CuS-0.00 Cu ₂ S-0.35 CuS ₂ -0.00	30 Zn ZnS-1.21 ZnS ₂ -2.00	\$7 Ga Ga ₂ S ₃ -2.03 GaS-2.03	#Ge GeS ₂ -2.26 GeS-0.76	\$7.45 \$7.45 \$7.45 \$7.2.20 \$4.55 \$-2.12 \$4.55 \$-2.12 \$4.55 \$-2.12 \$4.55 \$-2.12	su Se SeS ₇ -1.90	se Br	₩Kr
\$7 _{Rb} Rb ₂ S-1.90 RbS ₅ -1.98	se _{Sr} SrS-2.56 SrS ₂ -1.49	59 Y Y ₂ S ₃ -1.60 YS-0.00 Y ₅ S ₇ -0.00	40Zr ZrS ₂ -1.04 ZrS ₃ -1.09 ZrS-0.00	47 _{Nb} NbS ₂ -0.00 Nb ₃ S ₅ -0.00 NbS ₃ - 0.00	42 _{M0} MoS ₂ -1.58	#Te TeS2-1.18	44 _{Ru} RuS ₂ -0.68	45 _{Rh} RhS ₄ -0.00 Rh ₂ S ₃ -0.19	# Pd PbS2-0.65 PdS -0.01	47 _{Ag} Ag ₂ S-1.39	47 CdS-1.12 CdS ₂ -1.54	#In In ₂ S ₃ -0.84 InS-1.55	80 _{Sn} SnS ₂ -1.56 SnS-0.96	87 _{Sb} Sb ₂ S ₃ -1.30	87 _{Te} Te-0.58	so _i	# _{Xe}
⁵⁵ Cs Cs ₂ S-2.10 Cs ₂ S ₅ -1.89	⁵⁶ Ba BaS-2.21 BaS ₂ -1.21 BaS ₃ -1.62	⁵⁷⁻⁷¹ La-Lu	⁷² Hf HfS ₂ -1.23 HfS ₃ -1.14 HfS-0.00	⁷³ Ta TaS ₂ -0.00 Ta ₃ S ₂ -0.00 Ta ₅ S ₈ -0.00	⁷⁴ W WS ₂ -1.62	⁷⁵ Re ReS ₂ -1.45	⁷⁶ Os OsS2-0.00	⁷⁷ Ir IrS ₂ -0.56 Ir ₂ S ₃ -0.78	⁷⁸ Pt PtS ₂ -1.44 PtS-0.47	⁷⁹ Au Au ₂ S-1.91	⁸⁰ Hg HgS- <mark>0.00</mark>	⁸¹ TI TI ₂ S ₅ -1.69 TI ₂ S-0.90	⁸² Pb PbS-0.807 PbS-0.99	⁸³ Bi Bi ₂ S ₃ -1.50 BiS ₂ -1.19	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	⁸⁸ Ra	⁸⁹⁻¹⁰³ Ac-Lr	¹⁰⁴ Rf	¹⁰⁵ Db	106 Sg	¹⁰⁷ Bh	¹⁰⁸ Hs	109 Mt	¹¹⁰ Ds	111Rg	112Cn						
		ø7 _{La}	#Ce	# Pr	øø _{Nd}	#Pm	æ _{Sm}	ø _{Eu}	#Gd	# Tb	ø _{Dv}	ø _{Ho}	ø _{Er}	∞ Tm	n Yb	n Lu	(III)
		⁸⁹ Ac	⁹⁰ Th	97 Pa	⁹² U	⁹³ Np	94Pu	⁹⁵ Am	⁹⁶ Cm	97Bk	98CI	99Es	¹⁰⁰ Fm	101 Md	102 No		· · · ·

Fig. S7 The schematic of Kohn-sham band gap of binary sulfides throughout the whole Periodic Table. The corresponding binary sulfides of each element are listed below the element symbol and the band gap are followed behind the line.

Fig. S8 Threshold size and BVSE values of candidates pass the filter 4 along (a) b and (b) c direction of the structure.

Fig. S9 Histogram of numbers of compounds for each category that pass each filter in the high-throughput screening. Red, blue, and green color indicates the non-polyanionic oxides, polyanionic oxides, and halide, respectively. Filter 2-5 corresponding to phase stability, excluding the elements trends to form electronically conductive interphase, chemical stability with Li₆PS₅Cl and NCM, and fast Li ion conductivity.

Electrolytes	Equilibrium Phase
Li ₁₀ Ge(PS ₆) ₂ (LGPS)	GeS ₂ , P ₂ S ₇ , S
Li _{9.54} Si _{1.74} P _{1.44} S _{11.7} Cl _{0.3} (LSPSCI)	P ₂ S ₇ , SCl, SiS ₂ , S
Li ₆ PS ₅ CI (LPSCI)	SCI, P ₂ S ₇ , S
Li ₇ P ₃ S ₁₁	P ₂ S ₇ , S
Li ₃ PS ₄	P ₂ S ₇ , S

 Table S1. Oxidation products of sulfide electrolytes in fully-delithiated state.

Reaction type	State of LCO	Phase equilibrium between LCO and Li_3PS_4
		0.03 Li_3PS_4 + 0.97 LiCoO_2 \rightarrow 0.03 Li_3PO_4 + 0.073 $\text{Li}_{10}\text{Co}_4\text{O}_9$ + 0.679 CoO + 0.121 Li_2SO_4
		0.189 Li₃PS₄ + 0.811 LiCoO₂ → 0.08 Co₅S₅ + 0.095 Li₅CoO₄ + 0.189 Li₃PO₄ + 0.121 Li₂SO₄
	fully lithiated	0.207 Li ₃ PS ₄ + 0.793 LiCoO ₂ → 0.088 Co ₃ S ₈ + 0.207 Li ₃ PO ₄ + 0.121 Li ₂ SO ₄ + 0.275 Li ₂ O
	Tully lithlated	0.258 Li ₃ PS ₄ + 0.742 LiCoO ₂ → 0.082 Co ₃ S ₈ + 0.258 Li ₃ PO ₄ + 0.113 Li ₂ SO ₄ + 0.258 Li ₂ S
c		$0.314 \text{ Li}_3\text{PS}_4 + 0.686 \text{ LiCoO}_2 \rightarrow 0.314 \text{ Li}_3\text{PO}_4 + 0.029 \text{ Li}_2\text{SO}_4 + 0.229 \text{ Co}_3\text{S}_4 + 0.314 \text{ Li}_2\text{S}_4 + 0.229 \text{ Li}_2\text{SO}_4 + 0.229 L$
ctio		0.333 Li ₃ PS ₄ + 0.667 LiCoO ₂ → 0.167 CoS ₂ + 0.333 Li ₃ PO ₄ + 0.167 Co ₃ S ₄ + 0.333 Li ₂ S
rea		$0.022 \text{ Li}_3\text{PS}_4 + 0.978 \text{ Li}_{0.5}\text{Co}_1\text{O}_2 \rightarrow 0.311 \text{ LiCoO}_2 + 0.222 \text{ Co}_3\text{O}_4 + 0.022 \text{ Li}_3\text{PO}_4 + 0.089 \text{ Li}_2\text{SO}_4$
lical		0.04 Li ₃ PS ₄ + 0.96 Li _{0.5} Co ₁ O ₂ → 0.16 LiCoO ₂ + 0.04 Li ₃ PO ₄ + 0.8 CoO + 0.16 Li ₂ SO ₄
her		$0.045 \text{ Li}_3\text{PS}_4 + 0.955 \text{ Li}_{0.5}\text{Co}_1\text{O}_2 \rightarrow 0.045 \text{ Li}_3\text{PO}_4 + 0.012 \text{ Li}_{10}\text{Co}_4\text{O}_9 + 0.907 \text{ CoO} + 0.179 \text{ Li}_2\text{SO}_4$
0	half lithiatad	$0.215 \text{ Li}_3\text{PS}_4 + 0.785 \text{ Li}_{0.5}\text{Co}_1\text{O}_2 \rightarrow 0.086 \text{ Co}_9\text{S}_8 + 0.009 \text{ Li}_6\text{CoO}_4 + 0.215 \text{ Li}_3\text{PO}_4 + 0.169 \text{ Li}_2\text{SO}_4$
	nan nimateu	0.216 Li ₃ PS ₄ + 0.784 Li _{0.5} Co ₁ O ₂ → 0.087 Co ₉ S ₈ + 0.216 Li ₃ PO ₄ + 0.169 Li ₂ SO ₄ + 0.027 Li ₂ O
		0.222 Li ₃ PS ₄ + 0.778 Li _{0.5} Co ₁ O ₂ → 0.086 Co ₉ S ₈ + 0.222 Li ₃ PO ₄ + 0.168 Li ₂ SO ₄ + 0.027 Li ₂ S
		0.284 Li₃PS₄ + 0.716 Li₀₅Co₁O₂ → 0.284 Li₃PO₄ + 0.075 Li₂SO₄ + 0.239 Co₃S₄ + 0.104 Li₂S
		0.333 Li ₃ PS ₄ + 0.667 Li _{0.5} Co ₁ O ₂ → 0.417 CoS ₂ + 0.333 Li ₃ PO ₄ + 0.083 Co ₃ S ₄ + 0.167 Li ₂ S
		0.048 Li₃PS₄ + 0.952 LiCoO₂ → 0.571 Li + 0.952 CoO + 0.19 Li₂SO₄ + 0.048 Li₃PO₄
	2.03 V	0.217 Li ₃ PS ₄ + 0.783 LiCoO ₂ → 0.435 Li + 0.087 Co ₉ S ₈ + 0.174 Li ₂ SO ₄ + 0.217 Li ₃ PO ₄
		0.268 Li ₃ PS ₄ + 0.732 LiCoO ₂ → 0.537 Li + 0.244 Co ₃ S ₄ + 0.098 Li ₂ SO ₄ + 0.268 Li ₃ PO ₄
		0.333 Li₃PS₄ + 0.667 LiCoO₂ → 0.667 Li + 0.667 CoS₂ + 0.333 Li₃PO₄
		0.032 Li ₃ PS ₄ + 0.968 Li _{0.5} CoO ₂ → 0.294 Li + 0.041 Co ₂₃ O ₃₂ + 0.032 LiCoPO ₄ + 0.127 Li ₂ SO ₄
u		$0.033 \text{ Li}_3\text{PS}_4 + 0.967 \text{ Li}_{0.5}\text{CoO}_2 \rightarrow 0.319 \text{ Li} + 0.016 \text{ Co}_3(\text{PO4})_2 + 0.04 \text{ Co}_{23}\text{O}_{32} + 0.131 \text{ Li}_2\text{SO}_4$
acti		0.039 Li ₃ PS ₄ + 0.961 Li _{0.5} CoO ₂ → 0.442 Li + 0.077 Li2Co(SO ₄) ₂ + 0.019 Co ₃ (PO ₄) ₂ + 0.036 Co ₂₃ O ₃₂
alre		$0.047 \text{ Li}_3\text{PS}_4 + 0.953 \text{ Li}_{0.5}\text{CoO}_2 \rightarrow 0.617 \text{ Li} + 0.023 \text{ Co}_3(\text{PO}_4)_2 + 0.03 \text{ Co}_{23}\text{O}_{32} + 0.188 \text{ CoSO}_4$
mic		$0.05 \text{ Li}_3\text{PS}_4 + 0.95 \text{ Li}_{0.5}\text{CoO}_2 \rightarrow 0.625 \text{ Li} + 0.025 \text{ Co}_3(\text{PO}_4)_2 + 0.225 \text{ Co}_3\text{O}_4 + 0.2 \text{ CoSO}_4$
che		0.065 Li₃PS₄ + 0.935 Li₀₅5CoO₂ → 0.661 Li + 0.032 Co₃(PO₄)₂ + 0.581 CoO + 0.258 CoSO₄
ctro	4.07 V	0.148 Li₃PS₄ + 0.852 Li₀₅CoO₂ → 0.87 Li + 0.074 Co₃(PO₄)₂ + 0.039 Co₅Sଃ + 0.278 CoSO₄
Ele		$0.171 \text{ Li}_3\text{PS}_4 + 0.829 \text{ Li}_{0.5}\text{CoO}_2 \rightarrow 0.927 \text{ Li} + 0.085 \text{ Co}_3(\text{PO}_4)_2 + 0.11 \text{ Co}_3\text{S}_4 + 0.244 \text{ CoSO}_4$
		$0.2 \text{ Li}_3\text{PS}_4 + 0.8 \text{ Li}_{0.5}\text{CoO}_2 \rightarrow \text{Li} + 0.1 \text{ Co}_3(\text{PO}_4)_2 + 0.3 \text{ CoS}_2 + 0.2 \text{ CoSO}_4$
		0.226 Li ₃ PS ₄ + 0.774 Li _{0.5} CoO ₂ → 1.066 Li + 0.113 Co ₂ P ₂ O ₇ + 0.358 CoS ₂ + 0.189 CoSO ₄
		0.346 Li ₃ PS ₄ + 0.654 Li _{0.5} CoO ₂ → 1.365 Li + 0.173 Co ₂ P ₂ O ₇ + 0.308 CoS ₂ + 0.096 S ₈ O
		0.404 Li ₃ PS ₄ + 0.596 Li _{0.5} CoO ₂ → 1.511 Li + 0.494 CoS ₂ + 0.079 S ₈ O + 0.101 CoP ₄ O ₁₁
		0.973 Li ₃ PS ₄ + 0.027 Li _{0.5} CoO ₂ → 2.932 Li + 0.027 CoS ₂ + 0.054 S ₈ O + 0.486 P ₂ S ₇

Table S2. Phase equilibriums of chemical and electrochemical reaction	n between LCO and Li_3PS_4 .
---	--------------------------------

Species	Source	Band Gap / eV
Co ₉ S ₈	mp-1513	0
Co ₃ S ₄	mp-943	0
CoS ₂	mp-2070	0
Co ₂₃ O ₃₂	mp-705564	0
P ₂ S ₇	mp-1006118	2.023
S ₈ O	mp-27465	2.424
CoO	mp-22408	0.843
Li ₂ S	mp-1153	3.538
Li ₂ O	mp-1960	4.992
CoSO ₄	mp-19379	2.167
Li ₂ SO ₄	mp-558382	6.22
Li ₁₀ Co ₄ O ₉	mp-773128	1.401
Li ₆ CoO ₄	mp-18925	1.964
Co ₃ (PO ₄) ₂	mp-19264	2.9
Li ₃ PO ₄	mp-13725	5.838
Co ₂ P ₂ O ₇	mp-550468	2.088
CoP ₄ O ₁₁	mp-759681	3.174
LiCl	mp-22905	6.395
LiClO ₄	mp-30301	5.774
CIO ₂	mp-23207	0.966
Co ₂ PClO ₄	mp-622183	2.632
SCI	mp-28096	2.981
PCI ₃ O	mp-27277	4.684

Table S3. Kohn-Sham band gap of compounds formed in the phase equilibrium between $LiCoO_2$ and $Li_3PS_4/Li_6PS_5CI.$

Reaction type	State of LCO	Phase equilibrium between LCO and Li ₆ PS ₅ Cl
		0.024 Li6PSsCl + 0.976 LiCoO2 → 0.078 Li10Co4O9 + 0.024 Li3PO4 + 0.122 Li2SO4 + 0.663 CoO + 0.024 LiCl
		0.15 Li6PSsCl + 0.85 LiCoO2 → 0.15 Li6CoO4 + 0.15 Li3PO4 + 0.078 Co9S8 + 0.126 Li2SO4 + 0.15 LiCl
		0.172 Li6PSsCl + 0.828 LiCoO2 → 0.46 Li2O + 0.172 Li3PO4 + 0.092 Co9S8 + 0.126 Li2SO4 + 0.172 LiCl
	fully	0.258 Li6PS5Cl + 0.742 LiCoO2 → 0.258 Li3PO4 + 0.515 Li2S + 0.082 Co9S8 + 0.113 Li2SO4 + 0.258 LiCl
	lithiated	0.314 Li6PS5Cl + 0.686 LiCoO2 → 0.314 Li3PO4 + 0.629 Li2S + 0.029 Li2SO4 + 0.229 Co3S4 + 0.314 LiCl
ion		0.333 Li6PS5Cl + 0.667 LiCoO2 → 0.333 Li3PO4 + 0.667 Li2S + 0.333 Co2S3 + 0.333 LiCl
eact		0.018 Li6PS5Cl + 0.982 Li0.5Co1O2 → 0.351 LiCoO2 + 0.211 Co3O4 + 0.018 Li3PO4 + 0.088 Li2SO4 + 0.018 LiCl
al re		0.03 Li6PS5Cl + 0.97 Li0.5Co1O2 → 0.242 LiCoO2 + 0.03 Li3PO4 + 0.152 Li2SO4 + 0.727 CoO + 0.03 LiCl
emic		0.036 Li6PSsCl + 0.964 Li0.5Co1O2 → 0.019 Li10Co4O9 + 0.036 Li3PO4 + 0.181 Li2SO4 + 0.887 CoO + 0.036 LiCl
Che		0.171 Li6PS5Cl + 0.829 Li0.5Co1O2 → 0.067 Li6CoO4 + 0.171 Li3PO4 + 0.085 Co9S8 + 0.177 Li2SO4 + 0.171 LiCl
	half	0.181 Li6PS5Cl + 0.819 Li0.5Co1O2 → 0.209 Li2O + 0.181 Li3PO4 + 0.091 Co9S8 + 0.176 Li2SO4 + 0.181 LiCl
	nair lithiatod	0.222 Li6PSsCl + 0.778 Li0.5Co1O2 → 0.222 Li3PO4 + 0.249 Li2S + 0.086 Co9S8 + 0.168 Li2SO4 + 0.222 LiCl
	IIIIIateu	0.284 Li6PSsCl + 0.716 Li0.5Co1O2 → 0.284 Li3PO4 + 0.388 Li2S + 0.075 Li2SO4 + 0.239 Co3S4 + 0.284 LiCl
		0.304 Li6PSsCl + 0.696 Li0.5Co1O2→ 0.304 Li3PO4 + 0.435 Li2S + 0.348 Co2S3 + 0.043 Li2SO4 + 0.304 LiCl
		0.333 Li6PSsCl + 0.667 Li0.5Co1O2 → 0.333 CoS2 + 0.333 Li3PO4 + 0.5 Li2S + 0.167 Co2S3 + 0.333 LiCl
		0.04 Li6PS5Cl + LiCoO2 → 0.64 Li + 0.96 CoO + 0.2 Li2SO4 + 0.04 Li3PO4 + 0.04 LiCl
		0.188 Li6PS5Cl + 0.812 LiCoO2 → 0.752 Li + 0.09 Co9S8 + 0.218 Li2SO4 + 0.188 Li3PO4 + 0.188 LiCl
	2.03 V	0.234 Li6PS5Cl + 0.766 LiCoO2 → 0.936 Li + 0.255 Co3S4 + 0.149 Li2SO4 + 0.234 Li3PO4 + 0.234 LiCl
		0.25 Li6PSsCl + 0.75 LiCoO2 → Li + 0.375 Co2S3 + 0.125 Li2SO4 + 0.25 Li3PO4 + 0.25 LiCl
		0.333 Li6PS5Cl + 0.667 LiCoO2 → 0.333 Co2S3 + 0.667 Li2S + 0.333 Li3PO4 + 0.333 LiCl
		0.033 Li6PS5Cl + 0.967 Li0.5CoO2 → 0.65 Li + 0.017 Co3(PO4)2 + 0.167 CoSO4 + 0.033 LiClO4 + 0.25 Co3O4
u		0.037 Li6PS5Cl + 0.963 Li0.5CoO2 → 0.704 Li + 0.019 Co3(PO4)2 + 0.185 CoSO4 + 0.037 ClO2 + 0.241 Co3O4
acti		0.043 Li6PS5Cl + 0.957 Li0.5CoO2 → 0.739 Li + 0.217 CoSO4 + 0.043 Co2PClO4 + 0.217 Co3O4
al re		0.056 Li6PS5Cl + 0.944 Li0.5CoO2 → 0.806 Li + 0.556 CoO + 0.278 CoSO4 + 0.056 Co2PClO4
mic		0.121 Li6PS5Cl + 0.879 Li0.5CoO2 → 1.163 Li + 0.035 Co9S8 + 0.319 CoSO4 + 0.121 Co2PClO4
che		0.137 Li6PS5Cl + 0.863 Li0.5CoO2 → 1.255 Li + 0.294 CoSO4 + 0.137 Co2PClO4 + 0.098 Co3S4
ctro	4.07.1/	0.143 Li6PS5Cl + 0.857 Li0.5CoO2 → 1.286 Li + 0.143 Co2S3 + 0.286 CoSO4 + 0.143 Co2PClO4
Ele	4.07 V	0.158 Li6PS5Cl + 0.842 Li0.5CoO2 → 1.368 Li + 0.263 CoS2 + 0.263 CoSO4 + 0.158 Co2PClO4
		0.305 Li6PSsCl + 0.695 Li0.5CoO2 → 2.178 Li + 0.085 CoS2 + 0.305 Co2PClO4 + 0.169 S8O
		0.404 Li6PS5Cl + 0.596 Li0.5CoO2 → 2.725 Li + 0.101 CoP4O11 + 0.494 CoS2 + 0.079 S8O + 0.404 SCl
		0.443 Li6PS5Cl + 0.557 Li0.5CoO2 → 2.934 Li + 0.074 CoP4O11 + 0.484 CoS2 + 0.156 S8O + 0.148 PCI3O
		0.771 Li6PS5Cl + 0.229 Li0.5CoO2 → 4.743 Li + 0.229 CoS2 + 0.257 P2S7 + 0.2 S8O + 0.257 PCl3O
		0.871 Li6PS5Cl + 0.129 Li0.5CoO2 → 5.29 Li + 0.129 CoS2 + 0.29 P2S7 + 0.29 PCl3 + 0.258 S8O
		0.973 Li6PS5Cl + 0.027 Li0.5CoO2 → 5.851 Li + 0.027 CoS2 + 0.486 P2S7 + 0.054 S8O + 0.973 SCl

Table S4. phase equilibriums of chemical and electrochemical reaction between LCO and Li_6PS_5CI .

Na	Cathada	665-	Temp	Discharge compacity	Capacity	Def
NO.	Cathode	SSES	(°C)	(mAh g-1)	retention (%)	Ref.
1	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	β-Li₃PS₄	25 ℃	124 (0.1 C)	65.3 (0.1C, 50 cycles)	15
2	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	β-Li₃PS₄	25 ℃	127 (0.1 C)	78.7 (0.1C, 25 cycles)	16
3	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	LiGePS	35 ℃	155.4 (0.1 C)	50.1 (0.3C, 100 cycles)	17
4	LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂	Li ₆ PS₅Cl	RT	159 (0.1 C)	90 (0.1C, 600 cycles)	18
5	LiNi _{0.83} Mn _{0.06} Co _{0.11} O ₂	Li ₆ PS₅Cl	30 ℃	204(0.2 C)	/	19
6	LiNi _{0.88} Co _{0.09} Mn _{0.03} O ₂	Li ₆ PS₅Cl	33 ℃	200.7 (0.1 C)	86.5 (1C, 500 cycles)	20
7	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	β-Li₃PS₄	25 ℃	123 (0.1 C)	/	21
8	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	β-Li₃PS₄	25 ℃	106 (0.1 C)	64 (0.1C, 100 cycles)	22
9	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	Li ₆ PS₅Cl	RT	141(0.05 C)	97 (0.05C, 20 cycles)	23
10	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	Li ₆ PS₅Cl	30 ℃	155 (0.1 C)	/	24
11	LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂	Li ₆ PS₅Cl	45 ℃	161 (0.2 C)	45.5 (0.2C, 200 cycles)	25
12	LiNi _{0.5} Mn _{1.5} O ₄	LGPS	25 ℃	80 (0.05 C)	70.1 (0.05 C, 10 cycles)	26
13	LiNi _{0.5} Mn _{1.5} O ₄	Li ₆ PS₅Cl	30 ℃	83.4 (0.1 C)	70(0.1 C, 100 cycles)	27
14	LiMn ₂ O ₄	Li ₆ PS₅Cl	/	73 (0.1 C)	96 (0.1 C, 22 cycles)	28
15	LiCoO ₂	LGPS	30 ℃	119(0.1 C)	55(0.1 C, 300 cycles)	29
16	LiCoO ₂	LGPS	/	102(0.1 C)	80(0.1 C, 100 cycles)	30
17	LiCoO ₂	β -Li ₃ PS ₄	25 ℃	82	97.56(10 cycles)	31
18	LiCoO ₂	Li ₆ PS₅Cl	30 ℃	119.6(0.05 C)	/	32
19	LiCoO ₂	Li ₆ PS₅Cl	30 ℃	118 (0.2 C)	88.8(0.2 C, 50 cycles)	33
20	LiCoO ₂	Li ₆ PS ₅ Cl	30 ℃	125.9 (0.2 C)	74.74(0.2 C, 100 cycles)	34
21	Li ₂ RuO ₃	β -Li ₃ PS ₄	100 °C	220 (0.07 C)	76 (0.07 C, 95 cycles)	35
22	Li ₂ RuO ₃	Li ₆ PS ₅ Cl	RT	257 (0.05C)	90 (1 C, 1000 cycle)	36

Table S5. Comparation of battery performance of cells assembled with different SSEs and cathodein sulfide-based ASSBs.

screening				
Filter	Polyanionic oxides	Halides	Non-polyanionic oxides	Total
7 a	587	231	377	1105
Ζ"	(10.4%)	(21.0%)	(9.4%)	1195

151

(40.1%)

14

(9.3%)

2

(14.3%)

484

230

48

130

(56.3%)

96

(73.8%)

21

(21.9%)

Table S6. Numbers and percentages of compounds for each category that pass each filter of the screening.

^aPhase stability screening.

3^b

4^c

5^d

203

(34.6%)

120

(59.1%)

25

(20.8%)

^bExclude the elements trend to form electronically conductive products (Ni, Co, Mn, Ti, V, Fe, Cu...).

^cChemical stability screening $\Delta E_{D,mutual} \ge -0.165 \text{ eV/atom with Li}_6PS_5Cl and NCM.$

^dCVAD+BVSE < 0.6 eV.

 Table S7. List of 48 compounds that pass ionic conductivity screening (filter 5).

 $\Delta E_{D,mutual}$ is the reaction energy of the specific material with Li₆PS₅Cl and fully lithiated NCM/LCO in eV/atom. TR is the threshold size of the compounds along a, b, and c direction /Å.

BVSE is the diffusion energy barrier of the material in 1D, 2D, and 3D /eV.

Compounds	$\Delta E_{D,mutual}$				TR		BVSE			
Compounds	LPSCI	NCM	LCO	а	b	с	1D	2D	3D	
Li ₂ ZnSiO ₄	-0.151	0.000	0.000	0.68	0.64	0.68	0.59	0.59	0.64	
LiTaSiO₅	-0.067	-0.055	-0.006	0.74	0.74	0.74	0.35	0.35	1.26	
Li ₄ Al ₃ Si ₃ O ₁₂ Cl	0.000	-0.053	0.000	0.65	0.65	0.65	0.49	0.49	0.49	
Li ₃ PO ₄	0.000	0.000	0.000	0.64	0.60	0.62	0.55	0.55	1.04	
Li ₃ In ₂ (PO ₄) ₃	-0.155	-0.083	-0.037	0.69	0.86	0.69	0.56	0.60	0.63	
LiBi(PO ₃) ₄	-0.152	-0.127	-0.093	0.95	0.92	0.95	0.56	0.56	0.92	
Li ₃ Sc ₂ (PO ₄) ₃	-0.085	-0.068	-0.020	0.66	0.68	0.72	0.45	0.54	0.61	
LiZr ₂ (PO ₄) ₃	-0.093	-0.086	-0.034	0.91	0.91	0.91	0.56	0.56	0.56	
Li ₄ P ₂ O ₇	-0.072	-0.074	-0.040	0.75	0.75	0.75	0.28	0.49	0.49	
LiInP ₂ O ₇	-0.15	-0.098	-0.052	0.91	0.81	0.58	0.53	0.59	1.16	
LiScP ₂ O ₇	-0.098	-0.09	-0.044	0.92	0.88	0.60	0.43	0.54	1.07	
Li ₄ Be ₃ P ₃ O ₁₂ Cl	-0.064	-0.067	-0.030	0.59	0.59	0.59	0.56	0.56	0.56	
Li ₄ Be ₃ P ₃ O ₁₂ Br	-0.063	-0.066	-0.028	0.55	0.55	0.55	0.60	0.60	0.60	
$Li_2Mg_2(SO_4)_3$	-0.161	-0.061	-0.049	0.68	0.81	0.68	0.32	0.32	0.55	
Li ₃ BO ₃	-0.102	0.000	0.000	0.64	0.61	0.61	0.40	0.49	0.49	
Li ₃ Sc(BO ₃) ₂	-0.086	-0.048	-0.019	0.69	0.69	0.69	0.53	0.53	0.74	
Li ₃ Bi(BO ₃) ₂	-0.161	-0.045	-0.014	0.77	0.78	0.77	0.57	0.60	0.69	
Li ₆ Nd(BO ₃) ₃	-0.089	-0.037	0.000	0.72	0.72	0.69	0.44	0.59	0.94	
Li ₆ Y(BO ₃) ₃	-0.087	-0.038	-0.003	0.68	0.68	0.68	0.43	0.60	0.94	
Li ₂ Al(BO ₂) ₅	0.000	-0.06	-0.041	0.86	0.86	0.86	0.51	0.51	0.56	
Li ₂ AIBO ₄	-0.043	-0.047	-0.019	0.69	0.67	0.69	0.26	0.47	1.10	
Li ₆ B ₄ O ₉	-0.051	-0.047	-0.015	0.70	0.70	0.70	0.33	0.55	0.55	
Li ₁₀ B ₁₄ O ₂₅ Cl ₂	-0.031	-0.062	-0.057	0.55	0.55	0.55	0.53	0.53	0.53	
$Li_2B_3O_4F_3$	-0.070	-0.089	-0.089	0.69	1.08	0.68	0.23	0.59	0.82	
Li ₄ B ₇ O ₁₂ Cl	0.000	-0.067	-0.066	0.59	0.59	0.57	0.47	0.47	0.47	
LiAul ₄	-0.110	0.000	0.000	0.50	0.50	0.50	0.32	0.32	0.62	
LiGal ₄	-0.115	-0.063	-0.040	0.53	0.50	0.48	0.33	0.35	0.35	
LiInl₄	-0.104	-0.042	0.000	0.60	0.58	0.55	0.36	0.37	0.37	
K ₂ LiAlF ₆	-0.087	-0.054	-0.010	1.54	1.54	0.29	0.28	0.28	1.16	
Li ₂ BeF ₄	0.000	-0.075	-0.039	0.65	0.65	1.25	0.20	0.20	0.20	
Li ₂ SiF ₆	-0.102	-0.122	-0.075	0.58	0.58	0.57	0.46	0.49	0.49	
Li₃CrF ₆	-0.147	-0.107	-0.066	0.57	0.57	0.60	0.44	0.44	0.53	
Li₃ScF ₆	-0.085	-0.067	-0.024	0.58	0.58	0.57	0.50	0.52	0.52	
Li ₄ ZrF ₈	-0.092	-0.086	-0.040	0.57	0.60	0.57	0.36	0.37	0.40	
LiBF ₄	-0.103	-0.157	-0.144	0.76	0.76	0.84	0.17	0.17	0.17	

$Li_3Na_3Al_2F_{12}$	-0.072	-0.058	-0.018	0.61	0.61	0.61	0.22	0.22	0.22
Li ₃ Na ₃ Cr ₂ F ₁₂	-0.145	-0.079	-0.036	0.62	0.62	0.62	0.22	0.22	0.22
$Li_3Na_3Sc_2F_{12}$	-0.09	-0.055	-0.014	0.63	0.63	0.63	0.25	0.25	0.25
Li ₂ RbBe ₂ F ₇	-0.054	-0.068	-0.031	0.55	0.74	0.55	0.46	0.46	0.91
LiCsCl ₂	0.000	0.000	0.000	0.55	0.52	0.57	0.43	0.43	0.91
Li₃InCl ₆	-0.126	-0.063	-0.014	0.84	0.84	0.84	0.49	0.49	0.49
LiAICI ₄	-0.129	-0.156	-0.117	0.64	0.57	0.56	0.30	0.30	0.32
LiGdCl ₄	-0.120	-0.093	-0.045	0.49	0.49	0.49	0.41	0.41	0.41
Li ₃ ErBr ₆	-0.101	-0.086	-0.046	0.54	0.54	0.48	0.36	0.36	0.45
LiGaBr ₄	-0.140	-0.081	-0.024	0.62	0.55	0.55	0.33	0.36	0.36
LiRbBr ₂	0.000	0.000	0.000	0.64	0.45	0.64	0.25	0.53	0.72
Li ₃ NbO ₄	-0.148	0.000	0.000	0.54	0.54	0.54	0.39	0.39	0.39
Li₅TaO₅	-0.132	0.000	0.000	0.52	0.73	0.54	0.51	0.54	1.28

Reference

- 1. M. A. Green, J. Appl. Phy., 1990, 67, 2944-2954.
- 2. V. A. Blatov and A. P. Shevchenko, *Acta Cryst.*, 2003, **59**, 34-44.
- B. He, A. Ye, S. Chi, P. Mi, Y. Ran, L. Zhang, X. Zou, B. Pu, Q. Zhao, Z. Zou, D. Wang, W. Zhang, J. Zhao, M. Avdeev and S. Shi, *Sci. Data*, 2020, 7, 153.
- 4. J. Gao, G. Chu, M. He, S. Zhang, R. Xiao, H. Li and L. Chen, *Science China Physics, Mechanics & Astronomy*, 2014, **57**, 1526-1536.
- 5. X. He, Q. Bai, Y. Liu, A. M. Nolan, C. Ling and Y. Mo, *Adv. Energy Mater.*, 2019, **9**, 1902078.
- B. He, S. Chi, A. Ye, P. Mi, L. Zhang, B. Pu, Z. Zou, Y. Ran, Q. Zhao, D. Wang, W. Zhang, J. Zhao,
 S. Adams, M. Avdeev and S. Shi, *Sci. Data*, 2020, 7, 151.
- L. Zhang, B. He, Q. Zhao, Z. Zou, S. Chi, P. Mi, A. Ye, Y. Li, D. Wang, M. Avdeev, S. Adams and S. Shi, *Adv. Funct. Mater.*, 2020, **30**, 2003087.
- 8. B. He, P. Mi, A. Ye, S. Chi, Y. Jiao, L. Zhang, B. Pu, Z. Zou, W. Zhang, M. Avdeev, S. Adams, J. Zhao and S. Shi, *Acta Materialia*, 2021, **203**, 116490.
- 9. M. Avdeev, M. Sale, S. Adams and R. P. Rao, Solid State Ionics, 2012, 225, 43-46.
- 10. Y. Nishitani, S. Adams, K. Ichikawa and T. Tsujita, *Solid State Ionics*, 2018, **315**, 111-115.
- 11. I. D. Brown and D. Altermatt, *Acta Cryst.*, 1985, **41**, 244-247.
- 12. S. Adams and J. Swenson, *Phy. Rev. Lett.* 2000, **84**, 4144.
- 13. S. Adams and J. Stefan, *J. power sources*, 2006, **159**, 200-204.
- 14. S. Adams and J. Swenson, J. Phy.: Conden. Matter, 2005, 17, S87.
- 15. R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier and J. Janek, *Chem. Mater.*, 2017, **29**, 5574-5582.
- 16. R. Koerver, F. Walther, I. Aygün, J. Sann, C. Dietrich, W. G. Zeier and J. Janek, *J. Mater. Chem. A*, 2017, **5**, 22750-22760.
- 17. X. Li, Q. Sun, Z. Wang, D. Song, H. Zhang, X. Shi, C. Li, L. Zhang and L. Zhu, *J. Power Sources*, 2020, **456**, 227997.
- Y. Zhang, X. Sun, D. Cao, G. Gao, Z. Yang, H. Zhu and Y. Wang, *Energy Storage Materials*, 2021, 41, 505-514.
- 19. C. Doerrer, I. Capone, S. Narayanan, J. Liu, C. R. M. Grovenor, M. Pasta and P. S. Grant, ACS Appl. Mater. Interfaces, 2021, **13**, 37809-37815.
- Y. Wang, Z. Wang, D. Wu, Q. Niu, P. Lu, T. Ma, Y. Su, L. Chen, H. Li and F. Wu, *eScience*, 2022, 2, 537-545.
- 21. F. Strauss, T. Bartsch, L. de Biasi, A. Y. Kim, J. Janek, P. Hartmann and T. Brezesinski, ACS Energy Lett., 2018, **3**, 992-996.
- 22. A. Y. Kim, F. Strauss, T. Bartsch, J. H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann and T. Brezesinski, *Chemistry of Materials*, 2019, 31, 9664-9672.
- 23. T. Koç, F. Marchini, G. Rousse, R. Dugas and J.-M. Tarascon, ACS Appl. Energy Mater., 2021, 4, 13575-13585.
- 24. Y. J. Nam, D. Y. Oh, S. H. Jung and Y. S. Jung, *Journal of Power Sources*, 2018, **375**, 93-101.
- 25. F. Walther, F. Strauss, X. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski and J. Janek, *Chem. Mater.*, 2021, **33**, 2110-2125.
- 26. G. Oh, M. Hirayama, O. Kwon, K. Suzuki and R. Kanno, *Chem. Mater.*, 2016, **28**, 2634-2640.
- H. J. Lee, X. Liu, Y. Chart, P. Tang, J. G. Bae, S. Narayanan, J. H. Lee, R. J. Potter, Y. Sun and M. Pasta, *Nano Lett.*, 2022, 22, 7477-7483.

- 28. J. r. m. Auvergniot, A. Cassel, J.-B. Ledeuil, V. Vialle, V. Seznec and R. m. Dedryvère, *Chem. Mater.*, 2017, **29**, 3883–3890.
- 29. W. Zhang, F. H. Richter, S. P. Culver, T. Leichtweiss, J. G. Lozano, C. Dietrich, P. G. Bruce, W. G. Zeier and J. Janek, ACS Appl. Mater. Interfaces, 2018, **10**, 22226-22236.
- 30. W. Zhang, T. Leichtweiss, S. P. Culver, R. Koerver, D. Das, D. A. Weber, W. G. Zeier and J. Janek, ACS Appl. Mater. Interfaces, 2017, **9**, 35888-35896.
- 31. Y. Ito, M. Otoyama, A. Hayashi, T. Ohtomo and M. Tatsumisago, *J. Power Sources*, 2017, **360**, 328-335.
- 32. L. Wang, R. Xie, B. Chen, X. Yu, J. Ma, C. Li, Z. Hu, X. Sun, C. Xu, S. Dong, T. S. Chan, J. Luo, G. Cui and L. Chen, *Nat. Commun.*, 2020, **11**, 5889.
- 33. S. H. Jung, K. Oh, Y. J. Nam, D. Y. Oh, P. Brüner, K. Kang and Y. S. Jung, *Chem. Mater.*, 2018, **30**, 8190-8200.
- 34. L. Wang, X. Sun, J. Ma, B. Chen, C. Li, J. Li, L. Chang, X. Yu, T. S. Chan, Z. Hu, M. Noked and G. Cui, *Adv. Energy Mater.*, 2021, **11**.
- 35. N. K, N. Y, S. A, A. Hayashi, M. Deguchi, C. Hotehama, H. Tsukasaki, S. Mori, Y. Orikasa, K. Yamamoto, Y. Uchimoto and M. Tatsumisago, *Sci. Adv.*, 2020, **6**, eaax7236.
- Y. Q. Wu, K. Zhou, F. C. Ren, Y. Ha, Z. T. Liang, X. F. Zheng, Z. Y. Wang, W. Yang, M. J. Zhang,
 M. Z. Luo, C. Battaglia, W. L. Yang, L. Y. Zhu, Z. L. Gong and Y. Yang, *Energy Environ. Sci.*, 2022, 15, 3470-3482.