Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2023

Supplementary information

A giant Nernst power factor and figure-of-merit in polycrystalline NbSb₂ for Ettingshausen refrigeration

Peng Li^{a,b}, Pengfei Qiu^{a,b,c*}, Jie Xiao^a, Tingting Deng^c, Lidong Chen^{a,b}, and Xun Shi^{a,b*}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^cSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
*Email: *qiupf@mail.sic.ac.cn; xshi@mail.sic.ac.cn*

Supplementary Note 1

Separation of the diffusion component $(S_d^h - S_d^e)$ and phonon-drag component ($S_p^h - S_p^e$) from the measured Seebeck thermopower.

Due to the large overlap (350 meV) of the conduction and valence bands¹, NbSb₂ can be viewed as a strong degenerate system, where the diffusion component of Seebeck thermopower of electrons and holes varies linearly with temperature². Therefore, the phonon-drag component $(S_p^h - S_p^e)$ can be obtained by subtracting the linear extrapolation of diffusion component $(S_d^h - S_d^e)$ from the total Seebeck thermopower difference $(S_{xx}^h - S_{xx}^e)^3$. As shown in Figure 4f, for single-crystalline and polycrystalline NbSb₂, $(S_d^h - S_d^e)$ dominates above 80 K, and $(S_p^h - S_p^e)$ dominates over the $(S_d^h - S_d^e)$ below 80 K.

Supplementary Note 2

Derivation process of Nernst figure-of-merit z_N

Figure S1 shows the schematics of a rectangular Ettingshausen refrigerator, with the dimensions along the temperature difference direction, the current direction, and the applied magnetic field direction as L_x , L_y , and L_z , respectively. The temperature gradient in the *x*-direction is $\nabla_x T$. The electric field strength in the *y*-direction is ϵ_y . In unit time, the amount of heat extracted by the Ettinghausen effect is $S_{yx}T_l\epsilon_y\sigma_{yy}L_yL_z$, where S_{yx} is the Nernst thermopower, T_1 is the temperature of the cold end, and σ_{yy} is the electrical conductivity along the *y*-axis. The Joule heat flowing into the cold end is $\frac{1}{2}\epsilon_y^2\sigma_{yy}L_xL_yL_z$ and the heat of conduction from the hot end to the cold end is $\kappa_{xx}\nabla_xTL_yL_z$, where κ_{xx} is the thermal conductivity along the *x*-axis. The refrigeration capacity of the cold end per unit of time Q_{in} is

$$Q_{in} = \left[S_{yx}T_l\epsilon_y\sigma_{yy} - \frac{1}{2}\epsilon_y^2\sigma_{yy}L_x - \kappa_{xx}\nabla_xT\right]L_yL_z$$
(S1)

The input power P of the Ettingshausen refrigerator is

$$P = \left(\epsilon_y^2 \sigma_{yy} + S_{yx} \nabla_x T \epsilon_y \sigma_{yy}\right) L_x L_y L_z \tag{S2}$$

The COP of the Ettingshausen refrigerator is

$$COP = \frac{Q_{in}}{P} = \frac{S_{yx}T_l\epsilon_y\sigma_{yy} - \frac{1}{2}\epsilon_y^2\sigma_{yy}L_x - \kappa_{xx}\nabla_xT}{\left(\epsilon_y^2\sigma_{yy} + S_{yx}\nabla_xT\epsilon_y\sigma_{yy}\right)L_x}$$
(S3)

According to $dCOP/d^{\epsilon_y} = 0$, the optimum electric field strength is

$$\epsilon_{y,COP} = S_{yx} \nabla_x T \frac{1}{\sqrt{1 + z_N \overline{T} - 1}}$$
(S4)

In this case, the maximum COP can be obtained as

$$COP_{max} = \frac{T_{l}}{T_{h} - T_{l}\sqrt{1 + z_{N}T}} - \frac{T_{h}}{T_{l}}$$
(S5)

$$\frac{S_{yx}^2 \sigma_{yy}}{K_{rr}}$$
 and T is the eveness temperature of hot and and cold and $\frac{1}{2}(T_h + T_l)$

where z_N is κ_{xx} and T is the average temperature of hot end and cold end $2^{(r_h + r_D)}$. Thus, the z_N is a parameter that independent on the material's geometric factors.

Figure S1 Schematics of a rectangular Ettingshausen refrigerator.

Figure S2 Magnetic field dependences of Nernst thermopower S_{yx} of polycrystalline NbSb₂ at different temperatures. The data of single-crystalline NbSb₂ are included for comparison¹.

Figure S3 Temperature dependence of (a) electrical resistivity ρ_{xx} and (b) Hall resistivity ρ_{yx} for polycrystalline NbSb₂ under different magnetic fields.

Figure S4 Magnetic field dependence of Nernst power factor $(PF)_N$ for polycrystalline NbSb₂ at different temperatures.

Figure S5 Temperature dependences of $(PF)_N$ typical polycrystalline thermomagnetic materials under different magnetic fields. The data are taken from References 1, 4-16. The hollow symbols are for polycrystals, while the solid symbols are for single crystals.

Figure S6 Fitting of the (a) electrical resistivity $\rho_{xx}(B)$ and (b) Hall resistivity $\rho_{yx}(B)$ for polycrystalline NbSb₂ under different temperatures. The symbols are experimental data and the lines are the fitting curves.

Figure S7 Schematic diagram of the angle dependence of electrical resistivity ρ measurement for (a) single-crystalline NbSb₂ and (b) polycrystalline NbSb₂. *F* represent the direction of the sintering pressure of polycrystalline NbSb₂.

Figure S8 Temperature dependence of the carrier thermal conductivity κ_c for polycrystalline NbSb₂ at different magnetic fields obtained from the empirical equation.

Figure S9 Magnetic field dependence of Nernst figure-of-merit z_N for polycrystalline NbSb₂ at different temperatures.

Figure S10 Temperature dependences of Nernst figure-of-merit z_N of typical polycrystalline thermomagnetic materials under different magnetic fields. The data are taken from References 1, 5-16. The hollow symbols are for polycrystals, while the solid symbols are for single crystals.

<i>T</i> (K)	$\kappa_1 (W m^{-1} K^{-1})$	$\kappa_{\rm c} (0,T) ({\rm W m^{-1} K^{-1}})$	$\eta^{1/s}$ (T - 1)	S
5	1.18	13.30	2.83	1.75
15	15.15	24.81	1.75	1.45
25	47.59	20.81	0.74	1.51
50	57.12	11.19	0.25	1.66
100	29.31	8.13	0.058	1.55
150	20.08	8.52	0.042	1.72
200	15.95	9.13	0.033	1.85
250	14.22	9.42	0.030	1.91
300	13.72	9.61	0.025	1.89

 Table S1 Parameters used to fit the measured thermal conductivity of polycrystalline

 NbSb₂.

Supplementary references

- 1. P. Li, P. Qiu, Q. Xu, J. Luo, Y. Xiong, J. Xiao, N. Aryal, Q. Li, L. Chen and X. Shi, *Nat. Commun.*, 2022, **13**, 7612.
- 2. F. J. Blatt, P. A. Schroeder, C. L. Foiles and D. Greig, *Thermoelectric power of metals*, Plenum Press, New York and London, 1976.
- 3. V. D. Kagan, N. A. Red'ko, N. A. Rodionov, V. I. Pol'shin and O. V. Zotova, *Physics of the Solid State*, 2004, **46**, 1410-1419.
- 4. Z. Chen, X. Zhang, J. Ren, Z. Zeng, Y. Chen, J. He, L. Chen and Y. Pei, *Nat. Commun.*, 2021, **12**, 3837.
- C. Fu, S. N. Guin, T. Scaffidi, Y. Sun, R. Saha, S. J. Watzman, A. K. Srivastava,
 G. Li, W. Schnelle, S. S. P. Parkin, C. Felser and J. Gooth, *Research*, 2020,
 2020, 4643507.
- 6. Y. Pan, B. He, T. Helm, D. Chen, W. Schnelle and C. Felser, *Nat. Commun.*, 2022, **13**, 3909.
- K. F. Cuff, R. B. Horst, J. L. Weaver, S. R. Hawkins, C. F. Kooi and G. M. Enslow, *Appl. Phys. Lett.*, 1963, 2, 145-146.
- 8. P. Wang, C. Cho, F. Tang, P. Wang, W. Zhang, M. He, G. Gu, X. Wu, Y. Shao and L. Zhang, *Phys. Rev. B*, 2021, **103**, 045203.
- 9. S. J. Watzman, T. M. McCormick, C. Shekhar, S.-C. Wu, Y. Sun, A. Prakash, C. Felser, N. Trivedi and J. P. Heremans, *Phys. Rev. B*, 2018, **97**, 161404(R).
- C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser and B. Yan, *Nat. Phys.*, 2015, 11, 645-649.
- 11. J. Xiang, S. Hu, M. Lyu, W. Zhu, C. Ma, Z. Chen, F. Steglich, G. Chen and P. Sun, *Sci. China: Phys., Mech. Astron.*, 2019, **63**, 237011.
- H. Wang, Z. Zhou, J. Ying, Z. Xiang, R. Wang, A. Wang, Y. Chai, M. He, X. Lu,
 G. Han, Y. Pan, G. Wang, X. Zhou and X. Chen, *Adv. Mater.*, 2023, 35, 2206941.
- 13. T. Feng, P. Wang, Z. Han, L. Zhou, W. Zhang, Q. Liu and W. Liu, *Adv. Mater.*, 2022, **34**, 2200931.
- 14. T. Feng, P. Wang, Z. Han, L. Zhou, Z. Wang, W. Zhang, Q. Liu and W. Liu, *Energy Environ. Sci.*, 2023, **16**, 1560-1568.
- C. Fu, S. N. Guin, S. J. Watzman, G. Li, E. Liu, N. Kumar, V. Süβ, W. Schnelle,
 G. Auffermann, C. Shekhar, Y. Sun, J. Gooth and C. Felser, *Energy Environ*. *Sci.*, 2018, 11, 2813-2820.
- W. Liu, Z. Wang, J. Wang, H. Bai, Z. Li, J. Sun, X. Zhou, J. Luo, W. Wang, C. Zhang, J. Wu, Y. Sun, Z. Zhu, Q. Zhang and X. Tang, *Adv. Funct. Mater.*, 2022, 32, 2202143.