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Experimental Section

Materials. All chemicals were purchased from commercial sources without further 

purification. PM6, PTQ10, PTVT-T, PY-IT and PNDI were purchased from Solarmer 

Materials Inc. PYF-IT  and PNDIT-F3N were purchased from eFlexPV Limited. 

PEDOT:PSS (4083) was purchased from the CleviosTM. PPCBMB was provided by 

Tao Liu's group. All solvents were purchased from Sigma Aldrich , Energy Chemical 

or Heowns.

Device Fabrication. The conventional device structure of Substrate/ PEDOT:PSS/ 

active layer/ PNDIT-F3N/ Ag was adopted in this study. The rigid device is made on a 

ITO glass substrate, while the flexible device is on a PET substrate. PM6:PYF-IT, 

PM6:PYF-IT:PTQ10, PM6:PYF-IT:PTVT-T, PM6:PYF-IT:PNDI blends were 

dissolved in chloroform at the total concentration of 14 mg/mL and the optimal D/A 

ratio was 1:1.2 (w/w). The blend solutions were stirred at 60 °C for 4 h to fully dissolve. 

Prior to spin-coating the active layer solutions, 2% CN (v/v) was added

into the solutions. The PM6:PY-IT blends (1:1 weight ratio), were dissolved in o-XY 

(the concentration of donor was 10/11/12/13/14/15 mg mL-1 for all blends with the 

increase of PPCBMB’s content), with 1% vol 1-chloronaphthalene as additive (1 

vol%).PNDIT-F3N was dissolved in methanol at the concentration of 0.5 mg/mL with 

0.5 v% of acetic acid. Devices were fabricated as follows. First, ITO substrates were 

treated with UV ozone for 25 min. Then, about 20 nm PEDOT:PSS layers were 

deposited via spin-coating on the pre-cleaned ITO substrates and annealed at 150 °C 

for 20 min. Subsequently, the substrates were transferred to the argon-filled glove box. 

The mixed solutions were spin-coated onto the PEDOT:PSS layers, and the thicknesses 

of all active layers were about 100 nm. Note that the 0%, 17%, and 33% mixed solutions 

wereThen the films were treated with thermal annealing at 100 °C for 10 min. PNDIT-

F3N was spin-coated on the top of the active layers. Finally, 100 nm thick Ag was 

deposited on the top of PNDIT-F3N layer under high vacuum. The fabrication process 

of flexible devices is exactly the same as that of rigid devices. The effective area of the 



small area cells is about 0.04 cm2. Thin-films were prepared by spin coating from the 

toluene solutions. 

Electrochemical Properties. The J-V measurements were performed via the AAA solar 

simulator (SS-F5-3A, Enli Technology Co. Ltd, Taiwan) along with AM 1.5G spectra 

whose intensity was calibrated by the certified standard silicon solar cell at 100 

mW/cm2. The EQE spectra were measured through the Solar Cell Spectral Response 

Measurement System QE-R3011 (Enli Technology Co. Ltd, Taiwan). The thickness of 

blend layer was measured via the surface profilometer Bruker Dektak XT.

GIWAXS Characterizations. The samples for GIWAXS measurements were prepared 

on silicon substrates and the conditions were the same as the device preparation. 

GIWAXS experiments were carried out at the beamline 1W1A of Beijing Synchrotron 

Radiation Facility (BSRF) with an incident beam energy at 8 keV and the beamline 

BL16B1, BL14B1 and BL02U2 of Shanghai Synchrotron Radiation Facility (SSRF) 

with an incident beam energy at 10 keV. Scattering data were all collected with a fixed 

grazing angle of 0.2°. The beam center and sample-to-detector distance were calibrated 

with LaB6. 

Morphology Characterizations. The surface morphology of films was measured by a 

Nanoscope V AFM (Bruker Multimode 8) in tapping mode. The type of AFM 

cantilever is RTESPA-300, which possesses a k constant of about 40 N/m. The scanning 

area was 2 μm × 2 μm and the resolution is 256×256 pixels. The TEM images of films 

were obtained by the JEOL JEM-2100PLUS electron microscope and its accelerating 

voltage is 200 kV. The magnification of all TEM images is 30K.

Mechanical measurements. FOE tests were carried out using a polarizing microscope 

(ECLIPSE LV100N POL, Nikon) and a custom-designed tensile stage. The films were 

coated on glasses (size: 1.7 ×1.7 cm) and then transferred to the PDMS film via water. 

The crack-onset strains of films were measured by stretching PDMS until the films 



started to crack under the observation of a polarized light microscope. Stress-strain 

curves were acquired using a custom-designed FOW instrument (Auto Tensile Tester, 

MTM 920, SYSTESTER). In the FOW test, the blend films were coated on precleaned 

glasses (size: 2 × 2 cm) and then cut into a rectangle shape and transferred to the water 

surface. The blend films were moved above the PDMS fixture and then glued to the 

PDMS by lowering the liquid level. The thickness of the neat and blend films is about 

100 nm. 

The elastic modulus of the film is obtained from the wavelength of the surface crease 

produced when the film on the elastic substrate releases the pre-tightened elastic 

substrate.
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where vs is the Poisson ratio of substrate, λb is the buckling wavelength, vf is the Poisson 

ratio of the thin film, Es is the elastic modulus of the elastomer substrate and df is the 

thin film thickness.

In the FOE method, the adhesion and elastic mismatch between the film and the 

substrate affect the deformation and fracture behavior of the film, so the elastic modulus 

and crack initiation strain can depend on the characteristics of the substrate. The elastic 

modulus obtained by the FOW method has little influence on the substrate (water), 

which can reflect the real fracture behavior and elastic modulus. Therefore, the elastic 

modulus obtained by FOE is different from that obtained by FOW, but the change trend 

is similar.

The Davies model predicts the blending of interpenetrating network structures well, 

and its equation is as follows:1

                                       eq (S2)
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Where V and E represent the volume fraction and elastic modulus, respectively. In 

previous work, we demonstrated that the PM6: PY-IT binary blend has an excellent 

correlation with Davies model. Thus, we express the elastic modulus of PM6:PYF-



IT/PY-IT blend as Ei, which varies with the third components. The Kerner model is 

widely used to predict polymer blends of immiscible components (i.e., dispersed-

continuous phase morphology).2 The equation is as follows:
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Where v, m, and i represent Poisson’s ratio, continuous and dispersed phase, 

respectively. PTQ10 is immiscible with PM6 and PYF-IT, forming obvious dispersed 

phase morphology, so the PTQ10 blends can be predicted by Kerner-Davies model. 

Halpin-Tsai model is an equation considering polymer geometry,3,4 which is widely 

used to predict the elastic modulus of bulk and spherical blends, which can be expressed 

as equation: 
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Where ζi and m represent the shape factor of fillers and matrix. Since PY-IT and 

PPCBMB are short fibers in the blend membrane, their ζ value is assumed to be 13.3, 

similar to the previous study. We found that the experimental data were close to the 

Halpin-Tsai model, and results showed that the elastic modulus of the PPCBMB ternary 

blend system was also predictable.

Since PTVT-T is miscible with PM6 and PYF-IT and has little influence on the 

aggregation, we developed the Davies model in the ternary blending. The equation is 

as follows:
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Davies model is consistent with the variation trend of the elastic modulus of PTVT-T 

ternary blends, and the relationship between the elastic modulus and the content of 

PTVT-T is well predicted. The Coran-Patel model describes the elastic modulus 



variation of the blending of soft and hard materials,5,6 and Ye et al.7 used this model to 

predict various SEBS ternary blend systems. In PNDI blends, PNDI with high 

stretchability and low elastic modulus can act as soft phase, thus Coran-Patel and 

Davies models can be combined to describe these blends. The equation is as follows:

                          eq (S6)𝐸 = (1 ‒ 𝑉𝑛
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Where Ei is the elastic modulus of PM6:PYF-IT, and n represents the adjustable 

parameter, which is related to the degree of softness and hardness. Considering the 

elastic modulus of PNDI and miscible with PYF-IT, n is determined to be 1. When 

substituting the relevant values, the curve of Coran Patel-Davies model shows excellent 

agreement with the experimental data.



Table S1 The optimal photovoltaic performance of the polymer solar cells.

Active 

layer

The third 

component 

content

Voc (mV) Jsc (mA/cm2) FF (%) PCE (%)

0 901 23.55 70.2 15.02 (14.65±0.27)

0.1 905 24.01 70.1 15.23 (14.98±0.19)

0.2 895 23.66 67.2 14.21 (14.08±0.22)

0.3 897 21.92 66.6 13.10 (12.70±0.25)

0.5 874 22.33 64.6 12.62 (12.51±0.21)

0.7 869 22.56 63.5 12.45 (12.18±0.14)

PM6:PYF-

IT:PTQ10

1 846 21.01 61.9 11.00 (10.56±0.23)

0.1 898 23.82 70.6 15.10 (14.90±0.20)

0.2 894 23.76 75.9 16.12 (15.92±0.15)

0.3 874 23.32 73.5 14.98 (14.52±0.16)

0.5 856 22.42 73.0 14.01 (14.17±0.19)

0.7 851 21.13 72.2 12.99 (12.76±0.23)

PM6:PYF-

IT:PTVT-

T

1 828 19.40 70.3 11.23 (10.50±0.52)

0.1 903 23.88 71.8 15.48 (15.32±0.21)

0.2 905 23.12 69.8 14.60 (14.22±0.26)

0.3 908 22.00 68.2 13.61 (13.87±0.15)

0.5 912 18.45 50.9 8.62 (8.58±0.12)

0.7 921 15.32 43.7 6.21 (6.16±0.13)

PM6:PYF-

IT:PNDI

1 959 6.99 51.0 3.45 (3.42±0.11)

0 942 23.39 75.3 16.59 (16.34±0.17)

0.2 956 24.10 78.4 18.06 (17.81±0.26)

0.4 961 22.74 73.0 15.95 (15.81±0.18)

0.6 970 20.53 71.9 14.32 (14.12±0.21)

0.8 979 16.89 68.9 11.41 (11.15±0.20)

PM6:PY-

IT

:PPCBMB

1 996 11.27 65.8 7.39 (7.27±0.19)

Table S2 Molecular weight of various polymer donors and acceptors.
Mw (kg/mol) PDI



PM6 98.9 2.32

PTQ10 116.9 2.65

PTVT-T 133.5 1.96

PY-IT 13.7 2.01

PYF-IT 31.1 1.40

PNDI 251.7 1.78

PPCBMB 35.4 4.46

Figure S1 The photovoltaic performance parameters of ternary polymer solar cells 

vary with the third components loading. (a)PM6:PYF-IT:PTQ10; (b) PM6:PYF-

IT:PTVT-T; (c) PM6:PYF-IT:PNDI; (d) PM6:PY-IT:PPCBMB.

Table S3. The optimal photovoltaic performance of the flexible polymer solar cells.



Active layers Voc (mV) Jsc (mA/cm2) FF (%) PCE (%)

PM6:PYF-IT 887 22.65 67.4 13.54

PM6:PYF-IT:PTQ10 901 22.69 68.5 13.98

PM6:PYF-IT:PTVT-T 872 22.78 71.4 14.20

PM6:PYF-IT:PNDI 915 22.59 68.5 14.15

PM6:PY-IT 925 21.15 71.3 13.95

PM6:PY-IT:PPCBMB 941 22.51 73.6 15.58

Table S4. FOE measured COS and elastic moduli of various polymers. 
COS (%) Elastic modulus (GPa)

PM6 15 1.13

PTVT-T 13 1.44

PTQ10 20 2.41

PFY-IT 6 2.31

PY-IT 5 2.65

PNDI 110 0.55

PPCBMB 9 7.52

Table S5. PCE and T80 lifetime of all-PSCs in previous work and our work.

Blends
PCEmax 

(%)

Annealing 

temperature 

(°C)

T80 lifetime 

(h)
Reference

PTzBI-Si:N2200 11.2 80 ~2000 8

PBDTTTPD:N2200 6.67 150 ~6 9

PBDBT-BV20:N2200-

TV10
5.12 80 ~7 10

PM6:PYF-T-o (1:1.2 

blade)
9.2 70 ~218 11



PM6:PYF-T-o (1:4 

spin)
5.2 70 ~39 11

PM6:PYF-T-o (1:4 

blade)
6.4 70 ~44 11

PM6:PF1-TS4 8.63 85 ~20 12

PBDB-

T:P(BDT2BOY5-Cl)
10.67 100 ~80 13

PBDB-T:N2200 5.86 100 ~500 13

PBDT(T)FTAZ:N220

0
6.14 150 ~200 14

PBDT(T)FTAZ-

B5:N2200
6.86 150 ~240 14

PBDT(T)FTAZ-

B5:N2200 (UV 5min)
6.43 150 ~480 14

PBDT(T)FTAZ-B5 

N2200 (UV 15min)
5.78 150 ~320 14

PFBZ:N2200 8.1 150 ~180 15

PBDB-T:PYF-T 15.68 100 ~145 16

PBDB-T:PYF-T:PZT 16.37 100 ~750 16

PM6:PY-IT 15 20~35 ~2300 17

PM6:PY-IT:PYF-IT 16.6 20~35 ~3600 17

PM6: PYF-IT 15.1 20~35 ~3100 17

PM6:PY-V-γ (BC) 16.6 65 ~1200 18

PM6:PY-V-γ (SD) 17.7 65 ~1400 18

PM6:PYF-IT:PTQ10 15.23 85 ~2000

PM6:PYF-IT:PTVT-T 16.12 85 ~6700

PM6:PYF-IT:PNDI 15.48 85 ~8500

Our work



PM6:PY-IT:PPCBMB 18.06 85 ~5400

Table S6. PCE and COS of all-PSCs in previous work and our work.

Blends PCEmax (%) COS (%) Reference

PBDB-T:P(BDT2BOY5-

H)
8.65 19 13

PBDB-T:P(BDT2BOY5-

F)
9.64 17 13

PBDB-T:P(BDT2BOY5-

Cl)
10.67 16 13

QM-Cl:PY-IT 17.78 7.16 19

QM-Cl:PTQ10:PY-IT 

(0.8:0.2:1.2)
18.45 9.46 19

QM-Cl:PTQ10:PY-IT 

(0.5:0.5:1.2)
17.06 8.57 19

QM-Cl:PTQ10:PY-IT 

(0.2:0.8:1.2)
16.11 5.35 19

PTQ10:PY-IT 13.69 3.98 19

PBDB-TF:PY-IT 16.7 6.3 20

PBQx-TF:PY-IT 17 5.2 20

PBQx-TF: PBDB-

TF:PY-IT
18.2 5.8 20

PM6:PY-IT 15 5.2 17

PM6:PY-IT:PYF-IT 16.6 8.1 17

PM6: PYF-IT 15.1 6.3 17

PBDB-T:PYT-C0 4.84 2.75 21

PBDB-T:PYT-C2 11.2 12.39 21



PBDB-T:PYT-C4 3.37 6.03 21

PBDB-T:PYT-C8 2.74 4.77 21

PM6:PY-IT 15.49 9.67 22

PM6:PYTCl-A 16.16 17.20 22

PM6-A: PYTCl-A 15.54 20.01 22

PM6-B: PYTCl-A 14.03 18.55 22

PM6:PYTCl-B 13.61 18.67 22

PM6-A: PYTCl-B 13.29 21.02 22

PM6-B: PYTCl-B 12.73 22.74 22

PBDB-TF:PY-IT 15.8 5.3 23

PQM-Cl:PY-IT 18 6.5 23

PTB7-Th: P(NDI2HD-T) 4.53 15.5 24

PBDB-T: P(NDI2HD-

2T)
6.89 37 25

PBDTTTPD:P(NDI2HD-

T)
6.64 7.16 26

PM6:PYF-IT:PTQ10 15.1 15.23

PM6:PYF-IT:PTVT-T 15.6 16.12

PM6:PYF-IT:PNDI 15.3 15.48

PM6:PY-IT:PPCBMB 18.03 18.06

Our work



Figure S2. T80 analysis of organic solar cells based on PM6:PYF-IT:PTQ10, 

PM6:PYF-IT:PTVT-T, PM6:PYF-IT:PNDI and PM6:PY-IT:PPCBMB.

Figure S3. The toughness of various blend films with different blend compositions 

(FOW): (a) PM6:PYF-IT:PTQ10; (b) PM6:PYF-IT:PTVT-T; (c) PM6:PYF-IT:PNDI; 

(d) PM6:PY-IT:PPCBMB. 



Figure S4. AFM height, phase images and TEM images of PM6:PYF-IT and PM6:PY-

IT.

Figure S5. AFM phase images of PM6:PYF-IT:PTQ10 (a), PM6:PYF-IT:PTVT-T (b), 

PM6:PYF-IT:PNDI (c) and PM6:PY-IT:PPCBMB (d) of various contents.



Figure S6. PSD profiles of the four polymer blends with various third component 

content contents. PM6:PYF-IT:PTQ10 (a) PM6:PYF-IT:PTVT-T (b) PM6:PYF-

IT:PNDI (c) and PM6:PY-IT:PPCBMB (d). 

Figure S7. The melting temperature of various blend systems at different volume 

fractions of third component contents through DSC.



Table S7. Enthalpies of crystallization of four different blends.

Blends Content Melting point (°C) Enthalpy [J g−1]

0：10 284.5 1.9

1：9 286.6 2.2PM6:PTQ10

2：8 294.8 1.6

0：10 284.5 1.9

1：9 287.8 1.5PYF-IT:PTQ10

2：8 290.3 1.2

0：10 297.4 3.7

1：9 296.5 2.9PM6:PTVT-T

2：8 295.3 1.3

0：10 297.4 3.7

1：9 295.7 3.1PYF-IT:PTVT-T

2：8 293.2 2.5

0：10 300.7 5.6

1：9 302.3 5.4PM6:PNDI

2：8 304.7 5.1

0：10 300.7 5.6

1：9 295.3 3.1PYF-IT:PNDI

2：8 288.2 2.2

0：10 278.8 5.5
PM6:PPCBMB

1：9 276.9 6.0



2：8 275.0 3.4

0：10 278.8 5.5

1：9 280.6 5.6PY-IT:PPCBMB

2：8 282.4 6.2

Figure S8. AFM height images of four third component blends with polymer donor 

PM6 (a) and polymer acceptor PYF-IT/PY-IT (b).

Figure S9. (a) AFM phase images of four third component blends with polymer donor 

PM6. (b) AFM phase images of third component blended with polymer acceptors 

PYF-IT/PY-IT. (c) PSD analysis of AFM phase images.



Figure S10. (a) Elastic modulus measured by FOW and Kerner-Davies model of 

PM6:PYF-IT:PTQ10 in Quadrant Ⅰ. (b) Elastic modulus measured by FOW and 

Halpin-Tsai model of PM6:PY-IT:PPCBMB in Quadrant Ⅱ. (c) Elastic modulus 

measured by FOW and Davies model of PM6:PY-IT:PTVT-T in Quadrant Ⅲ. (d) 

Elastic modulus measured by FOW and Coran Patel-Davies model of PM6:PYF-

IT:PNDI in Quadrant Ⅳ. 

Figure S11. (a) Chemical structures of J71. The COS (b) and elastic moduli (c) of 

PM6:PY-IT:J71 as a function of the J71 content.
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