Electronic Supplementary Material to:

Economics and global warming potential of a commercial-scale delignifying biorefinery based on CELF pretreatment

Bruno Colling Klein ^{a,b}, Brent Scheidemantle ^{b,c,d}, Rebecca Hanes ^{b,e}, Andrew W. Bartling ^{a,b}, Nicholas Grundl ^{a,b}, Robin Clark ^{a,f}, Mary Biddy ^{a,b}, Ling Tao ^{a,b}, Cong Trinh ^{b,g}, Adam Guss ^{b,h}, Charles E. Wyman ^{b,c,d}, Arthur J. Ragauskas ^{b,g,i}, Erin G Webb ^{b,f}, Brian H. Davison ^{b,h}, Charles M. Cai ^{b,c,d*}

^a Catalytic Carbon Transformation & Scale-up Center, National Renewable Energy Laboratory, Golden, CO 80401, USA

^b Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA

^c Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA

^d Center for Environmental Research and Technology, Bourns College of Engineering, University of California, Riverside, 1084 Columbia Avenue, Riverside, CA 92507, USA

^e Strategic Energy Analysis Center, National Renewable Energy

Laboratory, Golden, CO 80401, USA

^f Environmental Sciences Division, Oak Ridge National Laboratory (ORNL), 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, USA

^g Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA

^h Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN
 37831, USA

ⁱ Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA

Biorefinery setup

Figure S1a depicts the overall integration between streams in biorefineries based on Cosolvent Enhanced Lignocellulosic Fractionation (CELF). Figure S1b shows a detailed flow diagram for CELF deconstruction of biomass with tetrahydrofuran (THF) and water as the solvents of choice, yielding three main streams:

- Cellulose-rich stream: recovered as the solid stream after solid-liquid separation of fractions after CELF deconstruction of biomass. Sent to conversion into isobutanol or ethanol via consolidated bioprocessing (CBP).
- Lignin-rich stream: water-insoluble (WIS) lignin precipitates from the aqueous solution after THF is removed with a distillation column for recycling purposes. This stream is sent directly to conversion via athermic oxygen removal (AOR) in supercritical methanol.
- Hemicellulose-rich stream: this stream contains several soluble organic compounds, mainly pentoses, water-soluble (WS) lignin, organic acids, and 1,4butanediol (1,4-BDO). During CELF deconstruction of biomass, a small portion of THF (1%) is reversibly converted into 1,4-BDO. This byproduct of CELF reactions can be returned in full to the reactor and account for part of the organic solvent in the required THF:water ratio if the process configuration allows. In the biorefining context considered in this study, preparatory assessments deemed the recovery of 1,4-BDO from the main aqueous stream a highly costly alternative from an energy requirement standpoint due to the molecule's high boiling point (230 °C) and its low concentration in the process (~8 g/L). In this way, it has been chosen to design the biorefinery with 1,4-BDO being present in the hemicellulose-rich stream. Hemicellulose-derived sugars (pentoses) contained in this stream are initially converted to isobutyl acetate via a fedbatch, anaerobic fermentation using Escherichia coli. As other compounds in this stream remain untouched in this step, such as WS lignin, organic acids, and 1,4-BDO, spent medium from this operation is sent to muconic acid fermentation using Pseudomonas putida, as this microorganism can be engineered to biologically funnel aromatics [1] and diols [2] into muconic acid. This compound is then recovered from the fermentation broth and further converted into adipic acid.

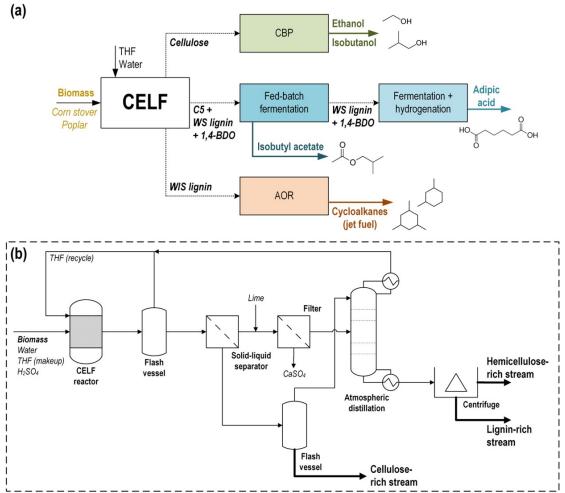


Figure S1. (a) Simplified block flow diagram for the proposed CELF-based

biorefineries outlining the mass integration strategy. (b) Detailed flow diagram for the CELF deconstruction of lignocellulosic biomass.

1,4-BDO: 1,4-butanediol; AOR: Athermic Oxygen Removal; C5: pentoses; CBP: consolidated bioprocessing; CELF: Co-solvent Enhanced Lignocellulosic Fractionation; THF: tetrahydrofuran; WS: water soluble; WIS: water insoluble.

Technical details

Component	Corn stover	Poplar
Hexoses		
Glucan	35.0%	50.4%
Galactan	1.4%	0.7%
Mannan	0.6%	2.9%
Hemicellulose		
Xylan	19.5%	15.3%
Acetyl	1.8%	2.0%
Lignin	15.8%	21.8%
Organic extracts	14.6%	6.4%
Sucrose	0.8%	-
Ash	4.9%	0.5%
Protein	3.1%	-

Table S1. Full biomass compositions (wt%).

Table S2. Detailed modeling parameters.

Parameter	Va	Comments	
Biomass conditioning	Poplar	Corn stover	
Milling power requirement	28 kWh/dry tonne	22 kWh/dry tonne	[3]
CELF pretreatment			
Reaction temperature, pressure	160°C, 200 psig	150 °C, 160 psig	
Solids loading	20	wt%	
THF to water ratio	1	:1	
H ₂ SO ₄ loading	0.	5%	
Biomass conversion			
Cellulose to oligomers	6.9%	5.9%	
Cellulose to glucose	7.2%	6.2%	[4-6]
Xylan to xylose	90.8%	91.2%	
Xylan to furfural	1.5%	1.0%	
Galactan to olygomers	48.7%	48.7%	
Galactan to galactose	51.3%	51.3%	
Acetate solubilization	90.0%	90.0%	
Lignin solubilization	91.4%	76.6%	
<i>Reversible conversion of THF to BDO</i>	1.	0%	
		I	
СВР	Ethanol	Isobutanol	
Solids loading			
Poplar	13%	8.5%	
Corn stover	20%	8.5%	
Titer			
Poplar	61 g/L	30 g/L	Assumption
Corn stover	75 g/L	23 g/L	
Component solubilization ^a			
Poplar	95%	90%	

Corn stover	95%	90%			
Component conversion ^b					
Poplar					
Glucose	98%	98%			
Xylose	93.1%	92.7%			
Arabinose	88.2%	88.7%			
Corn stover					
Glucose	98%	98%			
Xylose	93.1%	92.7%			
Arabinose	88.2%	88.7%			
AOR					
Component conversion					
$MeOH \rightarrow H_2 + CO$	(5%	۲ 7 01		
Lignin → Cycloalkanes + MeOH	9	5%	[7, 8]		
Reaction temperature, pressure	300 °C				
WHSV	5	Assumptions for continuous			
Methanol to lignin ratio	10	L/kg	operation		
Fermentation to isobutyl acetate					
Base reaction ^c	0.39 DCW +	$0.07 \text{ NH}_3 \rightarrow$ 0.62 IBA + 1.87 $\text{H}_2 + 0.78 \text{ H}_2\text{O}$	Estimates based on a separate		
Glucose/xylose conversion	9	7%	spreadsheet for dedicated fed-batch		
Productivity	0.79	g/L/h	fermentations		
IBA recovery in LLE	9	6%	Termentations		
Fermentation to muconic acid					
Volumetric productivity	1 g	g/L/h			
Substrate utilization	98%				
Ratio of C diverted to product			Estimates based on		
From aromatics and acids	1(00%	[9]		
From sugars and other organic molecules	5	4%			
Upgrading to adipic acid	Follo	we the concept pre	sented in [9]		
Upgrading to adipic acid Follows the concept presented in [9]					

^a Glucose, xylose, arabinose, mannose, galactose, lignin, and acetate

^b Ratio of C split: 95% to alcohol formation, 5% to cell biomass production

^c As both five- and six-carbon sugars are converted in the fermentation operation, the reactions for xylose and arabinose can also be derived from the equation by multiplying all non-sugar compounds by a factor of 5/6

AOR: Athermic Oxygen Removal; BDO: 1,4-butanediol; CBP: Consolidated Bioprocessing; CELF: Co-solvent Enhanced Lignocellulosic Fractionation; DCW: dry cell weight; IBA: isobutyl acetate; LLE: liquid-liquid extraction; THF: tetrahydrofuran; WHSV: weight hour space velocity

Carbon recovery efficiency

Carbon recovery efficiency is calculated through the ratio between the carbon flow in carbon-based products synthesized in the biorefinery and the carbon flow of biobased inputs to the facility, as shown in Equation S1. Natural gas and methanol are not accounted for in the calculations in view of their use as energy carriers: while natural gas is used in the Cogeneration of Heat and Power (CHP) section of the biorefineries for energetic purposes, methanol is employed in the Athermic Oxygen Removal (AOR) of lignin both as a solvent and to generate hydrogen for the cleavage of lignin bonds into cycloalkanes.

%Carbon recovery =
$$\frac{Carbon flow products\left(\frac{kg}{h}\right)}{Carbon flow biobased inputs\left(\frac{kg}{h}\right)}$$
(S1)

Table S3. Inputs and outputs considered for the calculation of the carbon recovery efficiency

Products	Carbon content (kg C/kg compound)
Ethanol	53.3%
Isobutanol	64.9%
Isobutyl acetate	62.1%
Adipic acid	49.3%
Cycloalkanes	85.7%

Biobased inputs	Carbon content (kg C/kg compound)
Poplar ^a	48.1%
Corn stover ^a	46.7%
1,4-butanediol (BDO) ^b	53.3%
Glucose	40.0%

^a Calculated on dry basis.

^b Originated from THF decomposition during CELF pretreatment of biomass. BDO is converted to muconic acid during aerobic fermentation to yield adipic acid after upgrading.

Economic parameters

Financial assumption	Value
Plant life	30 years
Cost year dollar	2016\$
Capacity Factor	90%
Discount rate	10%
General plant depreciation	MACR
General plant recovery period	7 years
Steam plant depreciation	MACR
Steam plant recovery period	20 years
Federal tax rate	21%
Financing	40% equity
Loan terms	10-year loan at 8% APR
Construction period	3 years
First 12 months' expenditures	8%
Next 12 months' expenditures	60%
Last 12 months' expenditures	32%
Working capital	5% of fixed capital investment
Start-up time	6 months
Revenues during start-up	50%
Variable costs during start-up	75%

Table S4. Main financial assumptions used in the techno-economic assessment (TEA), based on an nth-plant design basis.

APR: annual percentage rate; MACR: modified accelerated cost recovery

Feedstock		Pop	olar		Stover				
CBP alcohol	Etha	nol	Isobu	tanol	Etha	nol	Isobutanol		
Lignin fate	Cycloalkanes	Combustion	Cycloalkanes	Combustion	Cycloalkanes	Combustion	Cycloalkanes	Combustion	
Products									
Ethanol (million gal/yr)	51.9	51.9	-	-	37.8	37.8	-	-	
Isobutanol (million gal/yr)	-	-	36.3	36.3	-	-	29.1	29.1	
Cycloalkanes (million gal/yr)	18.2	-	18.2	-	11.0	-	11.0	-	
Isobutyl acetate (thousand t/yr)	41.4	41.4	41.4	41.4	53.6	53.6	53.6	53.6	
Adipic acid (thousand t/yr)	36.7	36.7	36.7	36.7	39.9	39.9	39.9	39.9	
Na_2SO_4 (thousand t/yr)	37.5	38.5	38.0	39.0	39.9	41.3	42.0	43.2	
Surplus electricity (GWh/yr)	0	0	34.6	0	0	0	0	0	
Fuel yield (GGE/dry ton feedstock)	75.9	46.7	70.1	40.8	51.8	34.2	49.7	32.1	
Ethanol	46.7	46.7	-	-	34.2	34.2	-	-	
Isobutanol	-	-	40.8	40.8	-	-	32.1	32.1	
Cycloalkanes	29.3	-	29.3	-	17.7	-	17.6	-	
Natural gas input (MMBTU/h)	574.0	0	1011.0	431.8	389.7	0	842.5	531.8	
Electricity imports (GWh/yr)	81.4	112.7	0	6.5	96.4	101.2	3.9	19.8	

Table S5. Detailed technical indicators of all assessed scenarios.

GGE: gallon of gasoline equivalent; MMBTU: million British thermal unit

Feedstock		Poj	olar		Stover			
CBP alcohol	Etha	nol	Isobu	tanol	Ethanol		Isobutanol	
Lignin fate	Cycloalkanes	Combustion	Cycloalkanes	Combustion	Cycloalkanes	Combustion	Cycloalkanes	Combustion
CAPEX (MM\$)								
Total Installed Costs ^a								
Biomass pretreatment (CELF)	45.5	45.5	45.5	45.5	58.5	58.5	58.5	58.5
Alcohol production	39.0	39.0	49.3	49.3	29.8	29.8	48.2	48.2
Isobutyl acetate production	78.9	78.9	78.9	78.9	94.5	94.5	94.5	94.5
Cycloalkanes production	88.3	-	88.3	-	62.5	-	62.5	-
Adipic acid production	72.4	72.4	72.4	72.4	78.1	78.1	78.1	78.1
Wastewater treatment	59.6	56.6	68.1	65.0	53.7	49.8	69.3	65.5
Cogeneration of heat and power	74.5	61.7	95.6	83.9	67.5	57.1	88.7	82.8
Utilities and storage	14.9	13.5	16.8	15.0	14.6	13.7	16.4	15.3
Other Direct Costs	56.7	41.4	58.5	42.9	56.6	45.7	59.8	48.8
Indirect Costs	317.9	245.7	344.0	271.6	309.5	256.7	345.6	295.2
Fixed Capital Investment (FCI)	847.7	655.2	917.5	724.2	825.3	684.5	921.6	787.2
IRR (%)	10.0%	10.1%	6.6%	5.8%	7.1%	7.6%	4.3%	3.7%
Alcohol MFSP (\$/GGE) b	2.99	2.97	3.92	3.90	3.84	3.59	4.95	4.85
RIN credit to reach viability (\$/gal) °	-	-	0.35	0.59	0.37	0.40	0.83	1.20
Carbon recovery efficiency (%)	52.5%	37.1%	49.3%	33.9%	46.2%	36.2%	44.9%	34.9%

Table S6. Detailed economic indicators of all assessed scenarios.

^a Feedstock processing and handling aspects are outside the scope of this work and are rolled into delivered feedstock costs at the throat of the biomass pretreatment section. ^b Calculated without RIN credits.

^c Combined gallons of alcohol (ethanol or isobutanol) and cycloalkanes (when lignin is converted in AOR).

Table S7. Detailed capital expenditures (CAPEX) of the scenario processing poplar to ethanol and producing cycloalkanes from lignin.

CELF PRETREATMENT	Equipment Costs							
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year	
CELF reactor								
Pretreatment Reactor	1	\$150,000	2013	\$150,000	1.00	2.5	\$21,484,664	
Sulfuric Acid Pump	1	\$8,000	2009	\$8,000	0.80	2.3	\$8,013	
Hydrolyzate Solid-Liquid Separator	1	\$35,000,000	2009	\$10,500,000	0.70	1.7	\$19,382,094	
Oligomer Conversion Tank (reacidifiaction)	1	\$203,000	2009	\$203,000	0.70	2.0	\$422,382	
Evaporator								
Evaporator Feed Tank	1	\$45,966	2011	\$45,966	0.60	2.5	\$39,389	
Evaporator Feed Heater	1	\$274,818	2011	\$274,818	0.60	3.0	\$161,468	
Evaporator Flash Drum	1	\$511,000	2009	\$511,000	0.70	2.0	\$356,520	
Solvent Recovery Column								
THF Recovery Column Tower	1	\$1,387,516	2007	\$1,387,516	0.60	1.1	\$2,706,157	
THF Recovery Column Reboiler	1	\$92,000	2010	\$92,000	0.70	2.2	\$196,068	
THF Recovery Column Condenser	1	\$85,000	2010	\$85,000	0.70	2.2	\$333,995	
Tanks								
THF storage tank	1	\$670,000	2009	\$670,000	0.70	1.7	\$309,844	
Sulfuric Acid Storage Tank	1	\$96,000	2010	\$96,000	0.70	1.5	\$102,952	
						Area totals	\$45,503,547	

CONVERSION & UPGRADING	Equipment Costs							
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year	
CBP to Ethanol								
Consolidated Bioprocessing (CBP)								
Fermenter Preheater	1	\$23,900	2009	\$23,900	0.70	1.8	\$25,126	
Ethanol Fermenter	1	\$844,000	2009	\$844,000	1.00	1.5	\$18,396,418	
Ethanol Fermenter Agitator	1	\$52,500	2009	\$52,500	1.00	1.5	\$1,144,327	
Fermenter Batch Cooler	1	\$23,900	2009	\$23,900	0.70	1.8	\$43,811	
Milling Equipment - Disc Refiner	8	\$2,466,700	2013	\$2,466,700	0.60	1.5	\$2,788,948	
Beer Transfer Pump	1	\$26,800	2009	\$26,800	0.80	2.3	\$47,938	
Beer Storage Tank	1	\$636,000	2009	\$636,000	0.70	1.8	\$1,016,389	
Beer Surge Tank Agitator	2	\$68,300	2009	\$68,300	0.50	1.5	\$95,110	
Seed Fermentation								
1st Seed Fermenter	2	\$75,400	2009	\$75,400	0.70	1.8	\$140,869	
2nd Seed Fermenter	2	\$116,600	2009	\$116,600	0.70	1.8	\$217,842	
3rd Seed Fermenter	2	\$157,600	2009	\$157,600	0.70	1.8	\$294,442	
4th Seed Fermenter	2	\$352,000	2009	\$352,000	0.70	2.0	\$730,709	
4th Seed Fermenter Coil	1	INCLUDED						
4th Seed Vessel Agitator	2	\$26,000	2009	\$26,000	0.50	1.5	\$40,480	
5th Seed Fermenter	2	\$1,180,000	2009	\$1,180,000	0.70	2.0	\$2,449,534	
5th Seed Fermenter Coil	1	INCLUDED						
5th Seed Vessel Agitator	2	\$43,000	2009	\$43,000	0.50	1.5	\$66,947	
Seed Transfer Pump	2	\$24,300	2009	\$24,300	0.80	2.3	\$39,892	
Seed Hold Tank	1	\$439,000	2009	\$439,000	0.70	1.8	\$618,766	
Seed Hold Tank Agitator	1	\$31,800	2009	\$31,800	0.50	1.5	\$40,483	
Seed Hold Transfer Pump	1	\$8,200	2009	\$8,200	0.80	2.3	\$13,462	
Ethanol Recovery								
Preheater	1	\$274,818	2011	\$274,818	0.60	3.0	\$1,078,429	
1st Column Condenser	1	\$9,900	2016	\$9,900	0.44	2.5	\$28,423	
1st Column Condenser Acc	1	\$12,900	2016	\$12,900	0.44	2.5	\$37,037	
1st Column Reboiler	1	\$120,700	2016	\$120,700	0.79	2.5	\$384,812	
1st Column Reflux Pump	1	\$4,600	2016	\$4,600	0.79	2.5	\$16,013	
1st Column Tower	1	\$222,500	2016	\$222,500	0.68	2.5	\$721,188	
2nd Column Condenser	1	\$60,900	2016	\$60,900	0.44	2.5	\$181,579	
2nd Column Condenser Acc	1	\$16,300	2016	\$16,300	0.44	2.5	\$48,600	
2nd Column Reboiler	1	\$24,900	2016	\$24,900	0.79	2.5	\$76,272	
2nd Column Reflux Pump	1	\$6,700	2016	\$6,700	0.79	2.5	\$22,588	
2nd Column Tower	1	\$358,500	2016	\$358,500	0.68	2.5	\$1,029,883	
Molecular Sieve Package (9 pieces)	1	\$2,601,000	2009	\$2,601,000	0.60	1.8	\$4,442,496	
Pump	1	\$26,800	2009	\$26,800	0.80	2.3	\$90,563	
Vent Scrubber Solids Removal	1	\$215,000	2009	\$215,000	0.60	2.4	\$493,151	
Lignin Wet Cake Conveyor	1	\$70,000	2000	ć70.000	0.00	47	¢20.027	
Lignin Wet Cake Screw	1		2009	\$70,000	0.80	1.7	\$30,827	
0		\$20,000	2009	\$20,000	0.80	1.7	\$8,808	
Pressure Filter Pressing Compr Pressure Filter Drying Compr	1 2	\$75,200 \$405.000	2009	\$75,200	0.60	1.6	\$104,266	
Filtrate Tank Discharge Pump	1	1	2009 2010	\$405,000	0.60	1.6 2.3	\$557,672 \$6,766	
Find a rank Discharge Pump	1	\$13,040	2010	\$13,040			\$6,766	
Manifold Flush Pump	1	\$18,173 \$17,057	2010	\$18,173 \$17,057	0.80	2.3	\$9,430 \$8,850	
Cloth Wash Pump	1	\$29,154	2010	\$17,057 \$29,154	0.80	2.3	\$15,127	
Filtrate Discharge Pump	1	\$13,040	2010	\$13,040	0.80	2.3	\$6,766	
Pressure Filter	2	\$3,294,700	2010	\$3,294,700	0.80	2.3	\$1,263,572	
Filtrate Tank	1	\$103,000	2010	\$103,000	0.80	2.0	\$55,864	
Field Tank	1	\$103,000	2010	\$174,800	0.70	2.0	\$94,806	
Recycled Water Tank	1	\$1,520	2010	\$1,520	0.70	3.0	\$94,806	
Pressing Air Compressor Receiver	1	\$1,520	2010	\$1,520	0.70	3.0	\$1,237 \$6,725	
	2	\$8,000	2010	\$8,000	0.70	3.1	\$14.291	
Drying Air Compressor Receiver								

CONVERSION & UPGRADING	Equipment Costs						
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year
Fed-batch Fermentation to Isobutyl Acetate							
Sugar Concentration	1	\$6,370,000	2013	\$6,370,000	0.70	2.0	\$10,208,077
Concentrated Sugar Storage Tank	1	\$168,000	2011	\$168,000	0.70	1.8	\$383,934
1st Seed Fermenter	1	\$37,700	2009	\$37,700	0.70	1.8	\$114,421
2nd Seed Fermenter	1	\$58,300	2009	\$58,300	0.70	1.8	\$176,943
3rd Seed Fermenter	1	\$78,800	2009	\$78,800	0.70	1.8	\$239,161
4th Seed Fermenter	1	\$176,000	2009	\$176,000	0.70	2.0	\$593,520
4th Seed Vessel Agitator	1	\$13,000	2009	\$13,000	0.50	1.5	\$28,623
Isobutyl Acetate Production Fermenter	1	\$590,000	2009	\$590,000	0.70	2.0	\$6,973,976
Isobutyl Acetate Production Fermenter Agitator	1	\$21,500	2009	\$21,500	0.50	1.5	\$115,956
Seed Transfer Pump	1	\$12,150	2009	\$12,150	0.80	2.3	\$10,173
Seed Hold Tank	1	\$439,000	2009	\$439,000	0.70	1.8	\$343,307
Seed Hold Tank Agitator	1	\$31,800	2009	\$31,800	0.50	1.5	\$26,578
Seed Hold Transfer Pump	1	\$8,200	2009	\$8,200	0.80	2.3	\$6,866
Beer Storage Tank	1	\$636,000	2009	\$636,000	0.70	1.8	\$54,763
Beer Surge Tank Agitator	1	\$44,150	2009	\$44,150	0.50	1.5	\$7,632
Beer Transfer Pump	1	\$26,800	2009	\$26,800	0.80	2.3	\$1,702
Ultrafiltration Membrane Separator	1	\$2,048,000	2011	\$2,048,000	1.00	2.5	\$56,824,395
Isobutyl Acetate Recovery Column Tower	1	\$286,000	2015	\$286,000	1.00	3.3	\$208,937
Isobutyl Acetate Recovery Column Condenser	1	\$16,400	2015	\$16,400	1.00	4.8	\$8,300
Isobutyl Acetate Recovery Column Condenser Acc	1	\$32,600	2015	\$32,600	1.00	5.1	\$17,535
Isobutyl Acetate Recovery Column Reboiler	1	\$318,800	2015	\$318,800	1.00	2.3	\$63,169
Isobutyl Acetate Recovery Column Reflux pump	1	\$13,100	2015	\$13,100	1.00	5.5	\$7,610
Centrifuge For Cell Removal	1	\$327,680	2011	\$327,680	0.60	2.3	\$2,452,971
						Area totals	\$78,868,551

CONVERSION & UPGRADING		Equipment Costs							
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year		
AOR to Cycloalkanes (Jet Fuel)									
Lignin Preparation									
Lignin Wet Cake Conveyor	1	\$70,000	2009	\$70,000	0.80	1.7	\$88,374		
Lignin Wet Cake Screw	1	\$20,000	2009	\$20,000	0.80	1.7	\$25,250		
Pressure Filter Pressing Compr	1	\$75,200	2009	\$75,200	0.60	1.6	\$26,277		
Pressure Filter Drying Compr	2	\$405,000	2009	\$405,000	0.60	1.6	\$140,542		
Filtrate Tank Discharge Pump	1	\$13,040	2010	\$13,040	0.80	2.3	\$19,397		
Feed Pump	1	\$18,173	2010	\$18,173	0.80	2.3	\$27,032		
Manifold Flush Pump	1	\$17,057	2010	\$17,057	0.80	2.3	\$25,372		
Cloth Wash Pump	1	\$29,154	2010	\$29,154	0.80	2.3	\$43,366		
Filtrate Discharge Pump	1	\$13,040	2010	\$13,040	0.80	2.3	\$19,397		
Pressure Filter	2	\$3,294,700	2010	\$3,294,700	0.80	1.7	\$3,622,341		
Filtrate Tank	1	\$103,000	2010	\$103,000	0.70	2.0	\$140,393		
Feed Tank	1	\$174,800	2010	\$174,800	0.70	2.0	\$238,260		
Recycled Water Tank	1	\$1.520	2010	\$1.520	0.70	3.0	\$3,108		
Pressing Air Compressor Receiver	1	\$8,000	2010	\$8,000	0.70	3.1	\$16,902		
Drying Air Compressor Receiver	2	\$17,000	2010	\$17,000	0.70	3.1	\$35,916		
Milling Equipment - Disc Refiner	8	\$2,466,700	2013	\$2,466,700	0.60	1.5	\$1,364,334		
Continuous Supercritical Reactor (AOR)									
AOR Feed Tank	1	\$45,966	2011	\$45,966	0.60	2.5	\$62,857		
AOR Reactor Pump	1	\$802,861	2014	\$802,861	0.80	1.4	\$684,340		
AOR Fixed Bed Reactor	1	\$6,513,387	2011	\$6,513,387	0.70	2.0	\$77,020,110		
Methanol Recovery Column Condenser	1	\$152,200	2016	\$152,200	0.44	2.5	\$229,183		
Methanol Recovery Column Condenser Acc	1	\$14,500	2016	\$14,500	0.44	2.5	\$21,834		
Methanol Recovery Column Reboiler	1	\$77,800	2016	\$77,800	0.79	2.5	\$107,725		
Methanol Recovery Column Reflux Pump	1	\$5,900	2016	\$5,900	0.79	2.5	\$9,187		
Methanol Recovery Column Tower	1	\$408,700	2016	\$408,700	0.68	2.5	\$1,267,894		
Cycloalkane Recovery Column Condenser	1	\$91,300	2016	\$91,300	0.44	2.5	\$240,187		
Cycloalkane Recovery Column Condenser Acc	1	\$22,800	2016	\$22,800	0.44	2.5	\$59,981		
Cycloalkane Recovery Column Reboiler	1	\$200,400	2016	\$200,400	0.79	2.5	\$541,356		
Cycloalkane Recovery Column Reflux Pump	1	\$9,200	2016	\$9,200	0.79	2.5	\$150,827		
Cycloalkane Recovery Column Tower	1	\$1,107,300	2016	\$1,107,300	0.68	2.5	\$2,027,444		
· · · · · · · · · · · · · · · · · · ·						Area totals	\$88,259,187		

CONVERSION & UPGRADING		Equipment Costs							
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year		
Fermentation and Upgrading to Adipic Acid									
Muconate Fermentation									
Sugar Concentration	1	\$6,370,000	2013	\$6,370,000	0.70	2.0	\$6,326,540		
Concentrated Sugar Storage Tank	1	\$168,000	2011	\$168,000	0.70	1.8	\$241,135		
1st Aerobic Seed	1	\$46,000	2009	\$46,000	1.00	1.80	\$257,824		
1st Seed Vessel Agitator	1	\$3,420	2009	\$3,420	1.00	1.50	\$15,974		
2nd Aerobic Seed	1	\$57,500	2009	\$57,500	1.00	1.80	\$322,280		
2nd Seed Vessel Agitator	1	\$11,000	2009	\$11,000	1.00	1.50	\$51,378		
Bubble Column Seed Fermenter	1	\$274,100	2014	\$274,100	1.00	2.30	\$1,778,358		
Seed Circulation Cooler	1	\$8,400	2014	\$8,400	1.00	2.20	\$52,130		
Bubble Column Production Fermenter	1	\$1,691,400	2014	\$1,691,400	1.00	2.30	\$29,263,422		
Production Circulation Cooler	1	\$48,100	2014	\$48,100	1.00	2.20	\$796,010		
Production Circulation Pump	1	\$11,500	2014	\$11,500	1.00	2.30	\$198,965		
Fermentation Air Compressor	1	\$1,318,600	2014	\$1,318,600	1.00	1.60	\$965,802		
Fermentation Air Receiver	1	\$104,600	2014	\$104,600	1.00	2.00	\$95,767		
Fermentation Surge Tank	1	\$45,966	2011	\$45,966	0.60	2.50	\$43,900		
Ultrafiltration Membrane Separator	1	\$2,048,000	2011	\$2,048,000	0.60	2.50	\$4,735,366		
Recovery and Upgrading to Adipic Acid									
Carbon Filter	1	\$345,234	2011	\$345,234	0.60	2.50	\$798,247		
CCM Crystallizer	2 (series)	\$7,104,192	2011	\$7,104,192	0.60	2.50	\$3,977,613		
CCM Centrifuge	1	\$327,680	2011	\$327,680	0.60	2.30	\$377,432		
CCM Drier	2 (parallel)	\$555,008	2011	\$555,008	0.60	2.60	\$767,457		
Dissolution Tank	1	\$1,317,325	2011	\$1,317,325	0.70	1.80	\$337,228		
Dissolution Tank agitator	1	\$63,000	2009	\$63,000	1.00	1.50	\$98,085		
Filtration Centrifuge (Salt Removal)	1	\$327,680	2011	\$327,680	0.60	2.30	\$27,874		
HDO Feed Tank	1	\$45,966	2011	\$45,966	0.60	2.50	\$22,951		
HDO Reactor Pump	1	\$802,861	2014	\$802,861	0.80	1.40	\$178,595		
HDO Feed Effluent Economizer	1	\$353,600	2011	\$353,600	0.70	2.66	\$144,121		
HDO Fixed Bed Reactor	1	\$6,513,387	2011	\$6,513,387	0.70	2.00	\$10,818,487		
Hydrogenation Intercooler (Bed 1)	1	\$2,353,181	2007	\$2,353,181	0.65	2.21	\$480,336		
Hydrogenation Intercooler (Bed 2)	1	\$2,353,181	2007	\$2,353,181	0.65	2.21	\$659,401		
H2 Makeup Compressor	1	\$1,621,200	2011	\$1,621,200	0.60	1.09	\$1,185,438		
H2 Makeup Compressor (Spare)	1	\$1,621,200	2011	\$1,621,200	0.60	1.08	\$1,176,045		
HHPS	1	\$436,000	2013	\$436,000	1.00	1.50	\$119,027		
HDO Hot Gas Cooler	1	\$321,600	2011	\$321,600	0.70	1.66	\$17,178		
CHPS	1	\$328,500	2011	\$328,500	0.70	2.59	\$11,843		
AA Evaporator Feed Tank	1	\$45,966	2011	\$45,966	0.60	2.50	\$32,322		
AA Evaporator Feed Heater	1	\$274,818	2011	\$274,818	0.60	3.00	\$128,568		
AA Evaporator Flash Drum	1	\$511,000	2009	\$511,000	0.70	2.00	\$283,070		
AA Condenser Drum	1	\$487,000	2010	\$487,000	0.60	2.80	\$447,069		
AA Crystallizer	2 (series)	\$7,104,192	2011	\$7,104,192	0.60	2.50	\$4,042,752		
AA Centrifuge Separator	1	\$327,680	2011	\$327,680	0.60	2.30	\$380,919		
AA Drier	2 (parallel)	\$555,008	2011	\$555,008	0.60	2.60	\$775,462		
	/		-			Area totals			

WASTEWATER TREATMENT			E	quipment Costs	3		
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year
Anaerobic Digestion (AD) System							
Anaerobic System	4	\$25,800,000	2012	\$25,800,000	0.60	1.1	\$20,512,669
Biogas Emergency Flare	4	INCLUDED	2012				
Aeration Basin	3	\$4,908,054	2012	\$4,908,054	0.60	2.1	\$9,454,996
Pump - Submersible, Anaerobic Feed	2	INCLUDED	2012				
Pump - Centrifugal, Aeration Basin Feed	4	INCLUDED	2012				
Aeration Grid	1	INCLUDED	2012				
Caustic Feed System	4	\$20,000	2012	\$20,000	0.60	3.0	\$42,976
Blowers	9	\$2,070,000	2012	\$2,070,000	0.60	2.0	\$2,965,376
Surface Aerators	3	\$150,000	2012	\$150,000	0.60	2.7	\$372,721
Membrane Bioreactor	1	\$4,898,500	2012	\$4,898,500	1.00	1.6	\$7,497,959
Pump, Centrifugal, MBR, RAS	6	INCLUDED	2012				
Gravity Belt Thickeners	3	\$750,000	2012	\$750,000	0.60	1.6	\$854,157
Centrifuge	1	\$686,800	2012	\$686,800	0.60	2.7	\$1,323,311
Pump, Centrifugal, Centrifuge Feed	2	INCLUDED	2012				
Pump, Submersible, Centrate	2	INCLUDED	2012				
Dewatering Polymer Addition	2	INCLUDED	2012				
Conveyor	1	\$7,000	2012	\$7,000	0.60	2.9	\$14,340
Reverse Osmosis	7	\$2,450,000	2012	\$2,450,000	1.00	1.8	\$4,001,661
Evaporator	1	\$5,000,000	2012	\$5,000,000	0.60	1.6	\$7,491,651
Ammonia Addition System	4	\$195,200	2012	\$195,200	0.60	1.5	\$215,318
Sodium Sulfate Recovery							
Evaporator Feed Tank	1	\$45,966	2011	\$45,966	0.60	2.5	\$255,872
Evaporator Feed Heater	1	\$274,818	2011	\$274,818	0.60	3.0	\$241,453
Evaporator Flash Drum	1	\$511,000	2009	\$511,000	0.70	2.0	\$3,163,561
Centrifuge	1	\$327,680	2011	\$327,680	0.60	2.3	\$422,357
Dryer	1	\$555,008	2011	\$555,008	0.60	2.6	\$785,346
						Area totals	\$59,615,726

COGENERATION OF HEAT AND POWER		Equipment Costs							
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year		
Burner Combustion Air Preheater	1	INCLUDED							
BFW Preheater	1	INCLUDED							
Pretreatment/BFW heat recovery	1	\$41,000	2009	\$41,000	0.70	2.2	\$37,627		
Air Intake Fan		INCLUDED							
Boiler	1	\$28,550,000	2010	\$28,550,000	0.60	1.8	\$58,845,939		
Turbine/Generator	1	\$9,500,000	2010	\$9,500,000	0.60	1.8	\$14,332,829		
Hot Process Water Softener System	1	\$78,000	2010	\$78,000	0.60	1.8	\$160,634		
Amine Addition Pkg.	1	\$40,000	2010	\$40,000	0.00	1.8	\$70,810		
Ammonia Addition Pkg	1	INCLUDED							
Phosphate Addition Pkg.	1	INCLUDED							
Condensate Pump	2	INCLUDED							
Turbine Condensate Pump	2	INCLUDED							
Deaerator Feed Pump	2	INCLUDED							
BFW Pump	5	INCLUDED							
Blowdown Pump	2	INCLUDED							
Amine Transfer Pump	1	INCLUDED							
Condensate Collection Tank	1	INCLUDED							
Condensate Surge Drum	1	INCLUDED							
Deaerator	1	\$305,000	2010	\$305,000	0.60	3.0	\$1,046,868		
Blowdown Flash Drum	1	INCLUDED							
Amine Drum	1	INCLUDED							
						Area totals	\$74,494,707		

UTILITIES AND STORAGE		Equipment Costs							
EQUIPMENT TITLE	NUM REQ	\$	Year of Quote	Purch Cost in Base Yr	Scaling Exp	Inst Factor	Inst Cost in Proj year		
Utilities System									
Cooling Tower System	1	\$1,375,000	2010	\$1,375,000	0.60	1.5	\$2,221,224		
Plant Air Compressor	1	\$28,000	2010	\$28,000	0.60	1.6	\$44,060		
Chilled Water Package	1	\$1,275,750	2010	\$1,275,750	0.60	1.6	\$2,726,071		
CIP System	1	\$421,000	2009	\$421,000	0.60	1.8	\$1,297,008		
Cooling Water Pump	3	\$283,671	2010	\$283,671	0.80	3.1	\$908,382		
Make-up Water Pump	1	\$6,864	2010	\$6,864	0.80	3.1	\$75,178		
Process Water Circulating Pump	1	\$15,292	2010	\$15,292	0.80	3.1	\$63,888		
Instrument Air Dryer	1	\$15,000	2009	\$15,000	0.60	1.8	\$28,024		
Plant Air Receiver	1	\$16,000	2009	\$16,000	0.60	3.1	\$51,482		
Process Water Tank No. 1	1	\$250,000	2009	\$250,000	0.70	1.7	\$640,561		
Storage									
Ammonia Storage Tank	2	\$196,000	2010	\$196,000	0.70	2.0	\$478,711		
CSL Storage Tank	1	\$70,000	2009	\$70,000	0.70	2.6	\$20,169		
CSL Storage Tank Agitator	1	\$21,200	2009	\$21,200	0.50	1.5	\$6,678		
CSL Pump	1	\$3,000	2009	\$3,000	0.80	3.1	\$749		
DAP Bulk Bag Unloader	1	\$30,000	2009	\$30,000	0.60	1.7	\$54,582		
DAP Bulk Bag Holder	1	INCLUDED							
DAP Make-up Tank	1	\$102,000	2009	\$102,000	0.70	1.8	\$39,662		
DAP Make-up Tank Agitator	1	\$9,800	2009	\$9,800	0.50	1.5	\$15,652		
DAP Pump	1	\$3,000	2009	\$3,000	0.80	3.1	\$10,055		
Sulfuric Acid Pump	1	\$7,493	2010	\$7,493	0.80	2.3	\$40,584		
Sulfuric Acid Storage Tank	1	\$96,000	2010	\$96,000	0.70	1.5	\$304,042		
Caustic Storage Tank	1	\$96,000	2011	\$96,000	0.70	1.5	\$201,820		
Firewater Storage Tank	1	\$803,000	2009	\$803,000	0.70	1.7	\$1,416,890		
Firewater Pump	1	\$15,000	2009	\$15,000	0.80	3.1	\$48,264		
Ethanol Storage	1	\$670,000	2009	\$670,000	0.70	1.7	\$1,730,001		
Isobutyl Acetate Storage	1	\$670,000	2009	\$670,000	0.70	1.7	\$689,508		
Cycloalkane Storage	1	\$670,000	2009	\$670,000	0.70	1.7	\$904,222		
Adipic Acid Storage	1	\$690,900	2007	\$690,900	0.65	1.850	\$462,853		
Sodium Sulfate Storage	1	\$690,900	2007	\$690,900	0.65	1.850	\$469,189		
						Area totals	\$14,949,507		

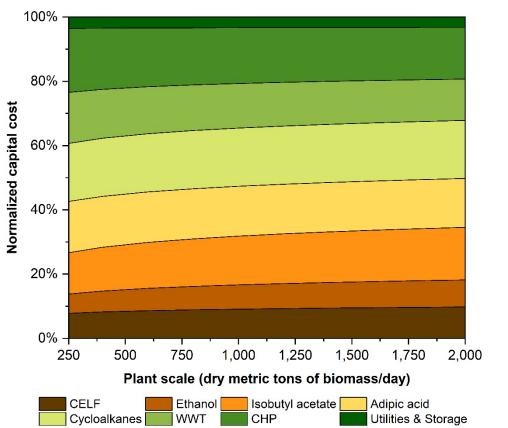


Figure S2. Breakdown of capital cost in a poplar/ethanol biorefinery with processing of lignin to cycloalkanes via AOR for different plant scales.

LCA methodology

Goal and Scope

The goal of this LCA is to quantify the environmental impacts of a CELF-based biorefinery and how those impacts are affected by feedstock selection, the primary alcohol product, and whether jet fuel is produced as a co-product. The scope of this LCA is farm-to-biorefinery-gate. Hereinafter, the assessed scenarios will be referred to by the numeric identification in Table S8.

Scenario	1	2	3	4	5	6	7	8
Feedstock	Poplar	Poplar	Stover	Stover	Poplar	Poplar	Stover	Stover
Alcohol	iBuOH	iBuOH	iBuOH	iBuOH	EtOH	EtOH	EtOH	EtOH
Lignin fate	Jet	Burn	Jet	Burn	Jet	Burn	Jet	Burn

Table S8. Numeric identification of scenarios for LCA discussion

Allocation Methods

Allocation based on product mass and on product economic value is applied to divide total biorefinery impacts among the various co-products. In Scenario 1, the biorefinery also produces excess electricity for sale to the grid; emissions credits from this excess electricity are quantified using system expansion or displacement. The product mass-based allocation factors for the eight scenarios are given in Table S9. The product economic value-based allocation factors are given in Table S10, and the product prices used to calculate these factors are given in Table S11.

Scenario	1	2	3	4	5	6	7	8
Isobutanol	0.384	0.485	0.342	0.396	-	-	-	-
Ethanol	-	-	-	-	0.466	0.569	0.398	0.456
Jet fuel (cycloalkanes)	0.212	-	0.140	-	0.184	-	0.130	-
Adipic acid	0.128	0.161	0.153	0.176	0.111	0.135	0.141	0.161
Isobutyl acetate	0.144	0.182	0.205	0.237	0.125	0.153	0.189	0.217
Sodium sulfate	0.132	0.171	0.160	0.191	0.114	0.142	0.141	0.167

Table S9. Mass-based allocation factors.

Table S10. Economic value-based allocation factors.

Scenario	1	2	3	4	5	6	7	8
Isobutanol	0.334	0.413	0.288	0.328	-	-	-	-
Ethanol	-	-	-	-	0.326	0.404	0.260	0.298
Jet fuel (cycloalkanes)	0.192	-	0.123	-	0.194	-	0.128	-
Adipic acid	0.262	0.324	0.303	0.345	0.266	0.329	0.315	0.361
Isobutyl acetate	0.189	0.234	0.260	0.296	0.192	0.238	0.271	0.310
Sodium sulfate	0.022	0.028	0.026	0.031	0.022	0.029	0.026	0.031

	Product Prices (USD/kg)
Isobutanol	0.8
Ethanol	0.55075
Jet fuel (cycloalkanes)	0.83
Adipic acid	1.886
Isobutyl acetate	1.206
Sodium sulfate	0.156

Table S11. Product prices used to calculate economic value allocation factors.

Inventory Analysis

The biorefinery inputs normalized to the production of 1 GGE alcohol product are given in Table S12 for scenarios 1-4 and in Table S13 for scenarios 5-8. The corn stover feedstock is assumed to have 12% moisture by mass, and the poplar feedstock 20% moisture by mass. Glucose is assumed to be sourced from corn wet milling, as is the corn steep liquor and ethanol. Methanol is assumed to be synthesized from natural gas to obtain a lower purchase price.

Two biorefinery inputs, the C_{16} solvent and the polymer used in wastewater treatment, were excluded from the LCA system boundary due to a lack of reasonable proxy data. As both inputs were in small quantities (< 0.01 kg/GGE), this is expected to have no impact on the LCA conclusions.

Finally, Table S14 presents the GWP per GGE attributable to each biorefinery input for isobutanol (scenario 1) and ethanol (scenario 5).

	Scenario	1	2	3	4
Feedstock	Poplar, bone dry	22.244	22.250	0	0
recustock	Corn stover, bone dry	0	0	30.115	30.115
	Sulfuric acid, 100%	0.335	0.335	0.427	0.427
CELF	Water, ultrapure	0.025	0.025	0.032	0.032
CELF	Tetrahydrofuran	0.447	0.447	0.552	0.552
	Lime	0.266	0.266	0.339	0.339
CBP to	Glucose	1.137	1.137	0.986	0.986
alcohol	Ammonia	0.115	0.115	0.102	0.102
Fermentation					
to isobutyl	Ammonia	0.080	0.080	0.127	0.127
acetate					
	Glucose	0.071	0.071	0.087	0.087
	Ammonia	0.013	0.013	0.024	0.024
	Diammonium phosphate	0.046	0.046	0.105	0.105
	Corn steep liquor	0.015	0.015	0.019	0.019
Adipic acid	Sulfuric acid, 100%	1.127	1.127	1.506	1.506
	Water, ultrapure	0.085	0.085	0.113	0.113
	Sodium hydroxide	0.231	0.231	0.308	0.308
	Ethanol	5.53E-03	5.54E-03	7.18E-03	7.18E-03
	Hydrogen	0.061	0.061	0.079	0.079
AOR to jet fuel	Methanol	0.910	0.000	0.675	0.000
	Sulfuric acid, 100%	2.62E-02	2.62E-02	6.44E-02	6.44E-02
Wastewater	Water, ultrapure	1.97E-03	1.97E-03	4.85E-03	4.85E-03
treatment	Ammonia	1.42E-02	1.09E-02	2.14E-02	1.60E-02
	Sodium hydroxide	7.27E-03	7.29E-03	1.09E-02	1.09E-02
	Boiler chemicals	2.90E-05	2.37E-05	3.22E-05	2.91E-05
Boiler	Lime	4.89E-03	4.45E-03	2.81E-02	2.72E-02
Doner	Ammonia	0.218	0.209	0.409	0.398
	Natural gas (MMBTU)	0.270	0.115	0.277	0.175
	Cooling tower chemicals	1.19E-03	9.21E-04	1.29E-03	1.12E-03
Utilities	Makeup water	86.724	71.314	96.587	88.897
	Electricity (kWh)	0.000	0.218	0.164	0.824

Table S12. Biorefinery inputs per GGE of alcohol product, scenarios 1-4. Input units are in kg unless specified otherwise.

	Scenario	5	6	7	8
	Poplar, bone dry	19.477	19.477	0	0
Feedstock	Corn stover, bone dry	0	0	29.269	29.269
	Sulfuric acid, 100%	0.294	0.294	0.415	0.415
CEL E	Water, ultrapure	0.022	0.022	0.031	0.031
CELF	Tetrahydrofuran	0.391	0.392	0.536	0.536
	Lime	0.233	0.233	0.329	0.329
CBP to	Glucose	0.992	0.992	0.958	0.958
alcohol	Ammonia	0.103	0.103	0.102	0.102
Fermentation					
to isobutyl	Ammonia	0.070	0.070	0.124	0.124
acetate					
	Glucose	0.062	0.062	0.084	0.084
	Ammonia	0.012	0.012	0.023	0.023
	Diammonium phosphate	0.040	0.040	0.102	0.102
A	Corn steep liquor	0.013	0.013	0.019	0.019
Adipic acid	Sulfuric acid, 100%	0.987	0.986	1.464	1.462
	Water, ultrapure	0.074	0.074	0.110	0.110
	Sodium hydroxide	0.203	0.202	0.300	0.299
	Ethanol	4.85E-03	4.86E-03	6.97E-03	6.98E-03
	Hydrogen	0.053	0.053	0.076	0.076
AOR to jet fuel	Methanol	0.797	0.000	0.657	0.000
	Sulfuric acid, 100%	2.29E-02	2.29E-02	6.26E-02	6.26E-02
Wastewater	Water, ultrapure	1.73E-03	1.73E-03	4.71E-03	4.71E-03
treatment	Ammonia	2.33E-02	1.96E-02	6.01E-02	5.10E-02
	Sodium hydroxide	5.33E-03	4.84E-03	8.79E-03	7.94E-03
	Boiler chemicals	1.74E-05	1.28E-05	2.10E-05	1.62E-05
Boiler	Lime	4.36E-03	3.98E-03	2.73E-02	2.65E-02
Donci	Ammonia	0.188	0.180	0.393	0.381
	Natural gas (MMBTU)	0.134	0.000	0.124	0.000
	Cooling tower chemicals	5.46E-04	4.17E-04	6.76E-04	5.76E-04
Utilities	Makeup water	44.925	38.345	58.159	54.470
	Electricity (kWh)	2.402	3.325	3.885	4.081

Table S13. Biorefinery inputs per GGE of alcohol product, scenarios 5 - 8. Input units are in kg unless specified otherwise.

	Isobutanol	Ethanol
Process-level emissions	13.62	11.49
Feedstock (poplar)	-15.11	-16.06
Sulfuric acid	7.80E-02	8.29E-02
Water, ultrapure (for sulfuric acid dilution)	3.62E-05	3.85E-05
Tetrahydrofuran	1.20	1.27
Lime	8.12E-02	8.63E-02
Glucose	0.25	0.03
Ammonia	0.40	0.39
Diammonium phosphate	5.73E-02	6.08E-02
Corn steep liquor	5.16E-05	5.48E-05
Sodium hydroxide	6.29E-02	6.65E-02
Ethanol	1.37E-03	1.46E-03
Hydrogen	4.14E-02	4.40E-02
Methanol	0.26	0.27
Boiler water chemicals	1.77E-05	1.28E-05
Cooling tower chemicals	9.82E-04	5.45E-04
Natural gas	2.34	1.41
Electricity	-0.35	0.88

Table S14. GWP per GGE attributable to each biorefinery input for isobutanol (scenario 1) and ethanol (scenario 5).

Samaria	Commodiust	Production by/CCE main much of	Baseline	CELF-Based biorefinery	
Scenario	Coproduct	Production, kg/GGE main product	<i>GWP</i> , kg CO ₂ eq/GGE main product	<i>GWP, kg CO</i> ₂ eq/GGE main product	
	Isobutanol	3.73	11.15	2.93	
	Cycloalkanes	2.07	1.12	1.62	
1	Adipic acid	1.24	30.18	0.98	
1	Isobutyl acetate	1.40	6.01	1.10	
	Sodium sulfate	1.29	0.74	1.01	
	TOTAL	-	49.19	7.65	
	Isobutanol	3.73	11.15	0.92	
	Cycloalkanes	0.00	0.00	0.00	
2	Adipic acid	1.24	30.20	0.31	
2	Isobutyl acetate	1.40	6.01	0.35	
	Sodium sulfate	1.32	0.76	0.33	
	TOTAL	-	48.12	1.90	
	Isobutanol	3.73	11.15	4.05	
	Cycloalkanes	1.53	0.83	1.66	
3	Adipic acid	1.66	40.46	1.81	
3	Isobutyl acetate	2.23	9.58	2.43	
	Sodium sulfate	1.75	1.01	1.90	
	TOTAL	-	63.03	11.86	
	Isobutanol	3.73	11.15	3.29	
	Cycloalkanes	0.00	0.00	0.00	
4	Adipic acid	1.66	40.46	1.47	
4	Isobutyl acetate	2.23	9.58	1.97	
	Sodium sulfate	1.80	1.04	1.59	
	TOTAL	-	62.23	8.32	

Table S15. GWP attributable to each product in CELF-based biorefineries producing isobutanol (baseline data for Figure 7, main text).

Scenario	Coproduct	Production, kg/GGE main product	Baseline	CELF-Based biorefinery
			<i>GWP</i> , kg CO ₂ eq/GGE main product	GWP, kg CO ₂ eq/GGE main product
5	Ethanol	4.57	-19.10	0.04
	Cycloalkanes	1.81	0.98	0.01
	Adipic acid	1.09	26.43	0.01
	Isobutyl acetate	1.23	5.26	0.01
	Sodium sulfate	1.11	0.64	0.01
	TOTAL	-	14.21	0.08
6	Ethanol	4.57	-19.10	-2.83
	Cycloalkanes	0.00	0.00	0.00
	Adipic acid	1.09	26.41	-0.67
	Isobutyl acetate	1.23	5.26	-0.76
	Sodium sulfate	1.14	0.66	-0.71
	TOTAL	-	13.23	-4.98
7	Ethanol	4.57	-19.10	2.45
	Cycloalkanes	1.49	0.81	0.80
	Adipic acid	1.62	39.32	0.87
	Isobutyl acetate	2.17	9.31	1.17
	Sodium sulfate	1.62	0.93	0.87
	TOTAL	-	31.26	6.16
8	Ethanol	4.57	-19.10	0.21
	Cycloalkanes	0.00	0.00	0.00
	Adipic acid	1.62	39.30	0.08
	Isobutyl acetate	2.17	9.31	0.10
	Sodium sulfate	1.67	0.96	0.08
	TOTAL	-	30.46	0.47

Table S16. GWP attributable to each product in CELF-based biorefineries producing ethanol (baseline data for Figure 7, main text).

References

[1] D.R. Vardon, M.A. Franden, C.W. Johnson, E.M. Karp, M.T. Guarnieri, J.G. Linger, M.J. Salm, T.J. Strathmann, G.T. Beckham, Adipic acid production from lignin, Energy & Environmental Science, 8 (2015) 617-628.

[2] M.A. Franden, L.N. Jayakody, W.-J. Li, N.J. Wagner, N.S. Cleveland, W.E. Michener, B. Hauer, L.M. Blank, N. Wierckx, J. Klebensberger, G.T. Beckham, Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization, Metabolic Engineering, 48 (2018) 197-207.

[3] M. Gil, I. Arauzo, E. Teruel, Influence of Input Biomass Conditions and Operational Parameters on Comminution of Short-Rotation Forestry Poplar and Corn Stover Using Neural Networks, Energy & Fuels, 27 (2013) 2649-2659.

[4] C.M. Cai, T. Zhang, R. Kumar, C.E. Wyman, THF co-solvent enhances hydrocarbon fuel precursor yields from lignocellulosic biomass, Green Chemistry, 15 (2013) 3140-3145.

[5] T.Y. Nguyen, C.M. Cai, O. Osman, R. Kumar, C.E. Wyman, CELF pretreatment of corn stover boosts ethanol titers and yields from high solids SSF with low enzyme loadings, Green Chemistry, 18 (2016) 1581-1589.

[6] P. Sengupta, C. Wyman, C. Cai, CELF Pretreatment Improves Ethanol Titers from High Solids SSF of Hardwood Poplar, Biotechnology for Biofuels and Bioproducts, (2022).

[7] K. Barta, T.D. Matson, M.L. Fettig, S.L. Scott, A.V. Iretskii, P.C. Ford, Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol, Green Chemistry, 12 (2010) 1640-1647.

[8] T.D. Matson, K. Barta, A.V. Iretskii, P.C. Ford, One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels, Journal of the American Chemical Society, 133 (2011) 14090-14097.

[9] R. Davis, N. Grundl, L. Tao, M. Biddy, E. Tan, G.T. Beckham, D. Humbird, D.N. Thompson, M.S. Roni, Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts: 2018 Biochemical Design Case Update, National Renewable Energy Laboratory, 2018, pp. 147.