Supporting Information

Achieving a high open-circuit voltage of 1.339 V in 1.77-eV wide-bandgap perovskite solar cells via self-assembled monolayers

Zongjin Yi^{1,†}, Wanhai Wang^{2,3,†}, Rui He¹, Jingwei Zhu¹, Wenbo Jiao¹, Yi Luo¹, Yuliang Xu¹, Yunfan Wang⁴, Zixin Zeng⁴, Kun Wei⁵, Jinbao Zhang⁵, Sai-Wing Tsang⁴, Cong Chen¹, Weihua Tang^{2,3,*}, Dewei Zhao^{1,*}

¹College of Materials Science and Engineering & Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China

²Institute of Flexible Electronics (IFE, Future Technologies), College of Materials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China

³School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

⁴Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, China

⁵College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen, China

*Correspondence to: <u>dewei_zhao@hotmail.com</u> and whtang@xmu.edu.cn †These authors contributed equally.

Experimental Part

Materials

N, *N*-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), toluene (TL), and Pb(SCN)₂ were purchased from Sigma-Aldrich. Diethyl ether (DE), anhydrous ethanol, and isopropanol (IPA) were purchased from Chengdu Chron Chemical Co., Ltd. Lead iodide (PbI₂) and lead bromide (PbBr₂) was purchased from TCI. Formamidinium iodide (FAI) was purchased from Greatcell Solar Company. Cesium iodide (CsI) was purchased from Alfa Aesar. Ploy(bias(4-phenyl)(2,4,6-trimethylphenyl)amine) (PTAA) was purchased from Xi'an Polymer Light Technology Corporation. C₆₀ was purchased from Nano-C. BCP was purchased from Jilin OLED. Copper (Cu) was purchased from Zhongnuoxincai Co., Ltd. DCB-BPA is synthesized according to our previous work.¹

Device preparation

Patterned indium tin oxide (ITO) glass substrates (25×25 mm, 10Ω sq⁻¹) were sequentially cleaned with detergent, deionized water, and ethanol for 15 min at each procedure in an ultrasonic bath. Before the spin-coating of HTLs, ITO glass substrates were dried by a nitrogen flow and then treated with ultraviolet ozone for 15 min. For PTAA-based devices, PTAA dissolved in toluene with a concentration of 2 mg/mL was spin-coated at 4000 rpm for 30 s and then heated on a hot plate at 100 °C for 10 min. For SAM-based devices, DCB-BPA was dissolved in anhydrous ethanol with a concentration of 0.1, 0.2, and 0.4 mg/mL, respectively. The DCB-BPA solution was spin-coated at 3000 rpm for 20 s and heated at 120 °C for 10 min. The FA_{0.8}Cs_{0.2}PbI_{1.8}Br_{1.2} perovskite precursor was prepared by dissolving 3.876 mg Pb(SCN)₂, 62.4 mg CsI, 165.12 mg FAI, 264.24 mg PbBr₂, 221.28 mg PbI₂ in 1 ml mixed solvent of DMF and DMSO with a volume ratio of 3:1 and stirred at 60 °C for 3 h before use. For the preparation of complete devices, 80 µL of perovskite precursor was dropped on the substrate and spin-coated through a two-step process, i.e., 500 rpm for 2 s and then 4000 rpm for 60 s. At the second stage, 700 µL of diethyl ether was dropped after the spin-coating of 25 s. The as-prepared perovskite film was annealed at 60 °C for 3 min and 100 °C for 10 min. Then the perovskite films were treated by a TEACl solution dissolved in IPA with a concentration of 2 mg/mL at 3000 rpm for 30 s, and then followed by an additional annealing process at 100 °C for 5 min according to our previous work.² After a short cooling, all samples were transferred into a thermal evaporation chamber, and a 20 nm C_{60} layer was evaporated at 5×10⁻⁴ Pa. For the opaque device, 5nm BCP and 100 nm Cu was thermally evaporated in an evaporation chamber with a vacuum degree of 5×10 -4 Pa. For the semitransparent device, the deposition of ALD-SnO₂ was performed using tetrakis(dimethylamino) tin (IV) and deionized water as precursors. And, 180 nm IZO was sputtered at 70 W power at a pressure of 0.2 Pa. 1.25-eV narrow bandgap perovskite solar cells were fabricated according to our previous work.³ The active area of the device is 0.0975 cm², defined by the overlapped region between the back electrode and the ITO substrate.

Analysis Methods

Film Characterization: XPS measurement was performed by a photoelectron spectrometer (ThermoFischer, ESCALAB Xi +) with Al-K α radiation (hv = 1486.6 eV) at 12.5 kV and 16 mA. Contact angles of PTAA and DCB-BPA were measured by a contact angle analyzer (JY-82B Kruss DSA). Scanning electron microscope (SEM) images were taken by Hitachi S-5200 microscope with an acceleration voltage of 10 kV. Powder X-ray diffraction (XRD) data were obtained using a Shimazu XRD-6100 diffractometer with Cu-K α radiation (λ = 1.5406 Å) at 40 kV and 30 mA. PL and TRPL measurements of perovskite films were performed by FLS980 (Edinburgh Inc) with a 532 nm wide spectrum light source as the excitation light source. Ultraviolet Photoelectron Spectroscopy (UPS) was performed by PHI 5000 VersaProbe III with He I source (21.22 eV) under an applied negative bias of 9.0 V.

Details of the PVSK exfoliation: Exfoliation of the perovskite films: PMMA (Sigma-Aldrich) precursor was prepared by dissolving 0.4g PMMA in 1mL CB. Epoxy precursor was prepared by mixing diglycidyl ether bisphenol A type (Sigma-Aldrich), n-octylamine (Sigma-Aldrich) and m-xylylenediamine (Sigma-Aldrich) with a molar ratio of 4:2:1. PMMA and epoxy layer were blade coated on the perpated perovskite film in a sequential order. In order to accelerate the cross-link process of epoxy, the coated substrate was annealed at 70 °C for 10 min. After 12 hours, the epoxy was completely solidified at room temperture. Finally, perovskite film was exfoliated from glass/ITO substrate by a glass nipping plier.The micromorphology of perovskite films bottom surface was characterized by SEM (SU-70, Japan Hitachi Nake high-tech enterprise). PL intensity (680 nm) mapping were obtained by Vis-NIR-XU (Nanophoton Corporation) with an excitation at 532 nm.

Device Characterization: *J-V* curves were recorded by a Keysight Technologies B2901A source meter under simulated solar illumination (Enlitech, SS-F5-3A). The light intensity was calibrated by a silicon reference cell (SRC-00205, Enlitech). The scan rate for *J-V* measurement was 100 mV·s⁻¹, with a delay time of 100 ms and a voltage step of 10 mV. All

devices were tested using a shadow mask with an active area of 0.0576 cm² for opaque devices and 0.0624 cm² for semitransparent devices. S-Q limit calculations were performed using a freely available Python code.⁴ The light intensity dependence of V_{OC} was obtained by measuring J-V curves under different illumination intensities. The EQE spectra were measured under monochromatic light ranging from 300 nm to 800 nm with a 10 nm increment and a chopper frequency of 210 Hz via a QE system (QE-R, Enli Tech). The MPP of the encapsulated devices were tracked by an LED (Guangzhou Crysco Equipment Co., Ltd.) under the relative humidity of ~ 50%. The dark J-V and SCLC was measured with a Keysight Technologies B2901A source meter under dark conditions. EIS and C-V measurements were performed by an electrochemical workstation (IVIUMSTAT). For EIS measurement, the frequency was changed from 10⁸ Hz to 1000 Hz at the bias of 1.1 V with an amplitude of 20 mV. For C-V measurement, the frequency was fixed at 1000 Hz with the voltage range of 0 V to 1.2 V. The highly-sensitive external quantum efficiency (s-EQE) spectra of wide-bandgap perovskite solar cells were obtained by using a home-built setup. During the measurements, light from a 1000 W xenon arc lamp (Newport) passes through a monochromator (Zolix) and optical chopper (ThorLabs) before being focused on the device active area. The generated photocurrent was amplified by a current amplifier (Standard Research SR570) and then collected by a lock-in amplifier (Standard Research SR830). The intensity of the light source was measured by calibrated silicon and germanium detectors (ThorLabs). EL was measured by Enlitech REPS with a bias from 0.5 V to 2.5 V.

Figure S1. Side view and electrostatic surface potential of DCB-BPA.

Figure S2. Transmittance spectra of PTAA/ITO and DCB-BPA/ITO.

Figure S3. Valence band edge (a) and secondary electron cut-off edge (b) from UPS measurements of different HTLs and the 1.77-eV WBG perovskite.

Figure S4. TRPL decays of perovskite films deposited on glass, PTAA, and DCB-BPA.

Figure S5. XRD patterns of WBG perovskite films deposited on PTAA and DCB-BPA.

Figure S6. Statistics of photovoltaic parameters of devices with different concentrations of DCB-BPA. (a) V_{OC} , (b) FF, (c) J_{SC} , and (d) PCE.

Figure S7. Statistics of photovoltaic parameters of devices with PTAA and DCB-BPA as HTLs. (a) FF and (b) J_{SC} .

235, Chengbei Road, Jiading, Shanghai, China

The measurement report without signature and seal are not valid. This report shall not be

reproduced, except in full, without the approval of SIMIT.

Figure S8. Measurement report of a WBG PSC certified by Shanghai Institute of Microsystem and Information Technology. The device has an independently certified PCE of 18.88% (18.67%) under reverse (forward) voltage scan.

Figure S9. P-V curves of S-Q limit of 1.77-eV PSCs.⁴

Figure S10. Statistics of photovoltaic parameters of devices with 2PACz and DCB-BPA as HTLs. (a) V_{OC} , (b) FF, (c) J_{SC} and (d) PCE

Figure S11. EIS of PTAA and DCB-BPA devices.

gure S12. SCLC measurements of hole-only devices tailored by (a) PTAA and (b) DCB-BPA.

Figure S13. Statistics of photovoltaic parameters of semitransparent devices using DCB-BPA as HTL. (a) V_{OC} , (b) FF, (c) J_{SC} , and (d) PCE.

	$\tau_1(\mathrm{ns})$	A_1	$\tau_2(ns)$	A_2	$\tau_{\rm ave}({\rm ns})$
Glass	111	0.087	401	0.913	375
PTAA	11	0.606	28	0.394	18
DCB-BPA	19	0.034	584	0.966	564

 Table S1. Fitted data for TRPL decays of perovskite films on different HTLs.

HTL	$V_{\rm OC}$ (V)	FF (%)	$J_{\rm SC}~({ m mA}{\cdot}{ m cm}^{-2})$	PCE (%)
PTAA (forward)	1.20	80.69	17.67	17.08
PTAA (reverse)	1.20	81.28	17.67	17.22
DCB-BPA (forward)	1.33	82.42	17.80	19.52
DCB-BPA (reverse)	1.33	82.70	17.75	19.53

Table S2. Photovoltaic parameters of champion devices using different HTLs under forward and reverse voltage scans.

Fable S3. Photovolta	c performance metric	s of state-of-the-ar	t p-i-n WBG (>	> 1.75 eV)) PSCs.
----------------------	----------------------	----------------------	----------------	------------	---------

Year	Device structur e	E _g (eV)	<i>V</i> _{OC} (V)	V _{OC} loss (mV)	PCE (%)	Ref.
2019	p-i-n	1.75	1.24	510	18.19	5
2019	p-i-n	1.81	1.21	600	17.1	6
2020	p-i-n	1.75	1.26	490	18.3	7
2022	p-i-n	1.79	1.25	540	17.6	8
2022	p-i-n	1.79	1.26	530	17.8	9
2022	p-i-n	1.8	1.26	540	17.7	10
2022	p-i-n	1.77	1.284	486	17.72	11
2022	p-i-n	1.75	1.33	420	20.3	12
2023	p-i-n	1.79	1.33 (Certified)	460	19.3 (Certified)	13
2023	p-i-n	1.77	1.31 V (1 cm ²)	460	18.46 (1 cm ²)	14
2023	p-i-n	1.77	1.31	460	19.33	15
2023	p-i-n	1.77	1.32	450	19.85	16
This work	p-i-n	1.77	1.339 (Certified)	431	18.88 (Certified)	

	$V_{\rm OC}({ m V})$	FF (%)	$J_{ m SC}$ (mA·cm ⁻²)	PCE (%)
Top cell	1.3	83.06	16.58	17.87
Bottom cell	0.86	77.04	31.00	20.53
Bottom cell (filtered)	0.82	79.76	13.85	9.03
4-T tandem cell	/	/	/	26.90

 Table S4. Photovoltaic parameters of devices used for the 4-T all-perovskite tandem cell.

References

- 1. W. Wang, Z. Lin, S. Gao, W. Zhu, X. Song and W. Tang, *Adv. Funct. Mater.*, 2023, DOI: 10.1002/adfm.202303653.
- C. Chen, J. Liang, J. Zhang, X. Liu, X. Yin, H. Cui, H. Wang, C. Wang, Z. Li, J. Gong, Q. Lin, W. Ke, C. Tao, B. Da, Z. Ding, X. Xiao and G. Fang, *Nano Energy*, 2021, 90, 106608.
- Q. Y. Chen, J. C. Luo, R. He, H. G. Lai, S. Q. Ren, Y. T. Jiang, Z. X. Wan, W. W. Wang, X. Hao, Y. Wang, J. Q. Zhang, I. Constantinou, C. L. Wang, L. L. Wu, F. Fu and D. W. Zhao, *Adv. Energy Mater.*, 2021, **11**, 2101045.
- 4. S. HAMADY, Python solar cell shockley-queisser limit calculator, https://github.com/sidihamady/Shockley-Queisser.
- C. Chen, Z. Song, C. Xiao, D. Zhao, N. Shrestha, C. Li, G. Yang, F. Yao, X. Zheng, R. J. Ellingson, C.-S. Jiang, M. Al-Jassim, K. Zhu, G. Fang and Y. Yan, *Nano Energy*, 2019, 61, 141-147.
- Y. M. Xie, Z. Zeng, X. Xu, C. Ma, Y. Ma, M. Li, C. S. Lee and S. W. Tsang, *Small*, 2020, 16, 1907226.
- Z. Li, J. Zhang, S. F. Wu, X. Deng, F. Z. Li, D. J. Liu, C. C. Lee, F. Lin, D. Y. Lei, C. C. Chueh, Z. L. Zhu and A. K. Y. Jen, *Nano Energy*, 2020, 78, 105377.
- S. Qin, C. Lu, Z. Jia, Y. Wang, S. Li, W. Lai, P. Shi, R. Wang, C. Zhu, J. Du, J. Zhang, L. Meng and Y. Li, *Adv. Mater.*, 2022, 34, 2108829.
- W. Chen, Y. Zhu, J. Xiu, G. Chen, H. Liang, S. Liu, H. Xue, E. Birgersson, J. W. Ho, X. Qin, J. Lin, R. Ma, T. Liu, Y. He, A. M.-C. Ng, X. Guo, Z. He, H. Yan, A. B. Djurišić and Y. Hou, *Nat. Energy*, 2022, 7, 229-237.
- J. Wen, Y. Zhao, Z. Liu, H. Gao, R. Lin, S. Wan, C. Ji, K. Xiao, Y. Gao, Y. Tian, J. Xie, C. J. Brabec and H. Tan, *Adv. Mater.*, 2022, **34**, 2110356.
- R. He, Z. Yi, Y. Luo, J. Luo, Q. Wei, H. Lai, H. Huang, B. Zou, G. Cui, W. Wang, C. Xiao, S. Ren, C. Chen, C. Wang, G. Xing, F. Fu and D. Zhao, *Adv. Sci.*, 2022, 9, 2203210.
- Q. Jiang, J. Tong, R. A. Scheidt, X. Wang, A. E. Louks, Y. Xian, R. Tirawat, A. F. Palmstrom, M. P. Hautzinger, S. P. Harvey, S. Johnston, L. T. Schelhas, B. W. Larson, E. L. Warren, M. C. Beard, J. J. Berry, Y. Yan and K. Zhu, *Science*, 2022, 378, 1295-1300.
- H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, Z. Wang, L. Zeng, S. M. Park, L. Chen, P. Serles, R. A. Awni, B. Subedi, X. Zheng, C. Xiao, N. J. Podraza, T. Filleter, C. Liu, Y. Yang, J. M. Luther, S. De Wolf, M. G. Kanatzidis, Y. Yan and E. H. Sargent, *Nature*, 2023, 613, 676-681.
- R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, Y. Luo, C. Wang, H. Lai, H. Huang, J. Zhou, B. Zou, X. Yin, S. Ren, X. Hao, L. Wu, J. Zhang, J. Zhang, M. Stolterfoht, F. Fu, W. Tang and D. Zhao, *Nature*, 2023, 618, 80-86.
- J. Zhu, Y. Luo, R. He, C. Chen, Y. Wang, J. Luo, Z. Yi, J. Thiesbrummel, C. Wang, F. Lang, H. Lai, Y. Xu, J. Wang, Z. Zhang, W. Liang, G. Cui, S. Ren, X. Hao, H. Huang, Y.

Wang, F. Yao, Q. Lin, L. Wu, J. Zhang, M. Stolterfoht, F. Fu and D. Zhao, *Nat. Energy*, 2023, 8, 714-724.

16. H. Liu, J. Dong, P. Wang, B. Shi, Y. Zhao and X. Zhang, *Adv. Funct. Mater.*, 2023, DOI: 10.1002/adfm.202303673.