Supplementary Information

High-loading As single-atom catalysts harvested from wastewater towards efficient and sustainable oxygen reduction

Yangjun Luo^{a,1}, Yanwei Wang ^{a,1}, Huijuan Zhang ^{a,b,1}, Youyuan Wang^{a,1}, Jin Wan^a, Chuanzhen Feng^a, Lingmei Liu^a, Zaiping Guo^{c*}, Jian Li^a, Yu Wang^{a,b*}

^a State Key Laboratory of Power Transmission Equipment Technology, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China

^b College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China

^c School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide 5005, Australia.

¹ These authors contribute equally

*E-mail: zaiping.guo@adelaide.edu.au; wangy@cqu.edu.cn

Supplementary Information:

- 1. Methods
- 2. Supplementary Figures 1-25
- 3. Supplementary Tables 1-9
- 4. Supplementary References 1-43

1. Methods

Synthesis of RC support. In a typical procedure, 10 g potassium citrate tribasic monohydrate ($K_3C_6H_5O_7 \cdot H_2O$) precursors were transferred to a tube furnace¹. The furnace was heated to 800 °C for 1 h with a continuous flow of argon (Ar) gas at 70 sccm. The black products were stirred in 0.5 M H₂SO₄ for 12 h to remove the metal impurities. The sample was then washed with deionized water and ethanol, respectively. After drying at 60 °C, the regular carbon (RC) support was obtained.

Synthesis of As-DC1-1050, As-RC1-1050, As-DC2-1050 and DC support. First, 150 mg RC support, 1.0 mmol of zinc nitrate hexahydrate and 20 mmol of α -D-glucose were dispersed in 10 mL of deionized water and sonicated for 40 min. The resulting slurry was washed with deionized water and dried to obtain a black powder. 60 mg of the resulting powder was placed uniformly in thin layers on a combustion boat and then transferred to the downstream end of the tube furnace. 240 mg of NaAsO₂ was placed on another combustion boat and was transferred upstream to the tube furnace. The two boats were spaced 1-2 cm apart and one end was mechanically cut off to allow unobstructed passage of the gas.

Secondly, single-atom As was loaded adjacent to the defects formed by the evaporation of zinc via the CVD method. To allow relatively gentle evaporation/decomposition of NaAsO₂, the temperature was raised to 820 °C for 40 minutes with a continuous flow of Ar gas at 70 sccm. The temperature was then further increased to 910 °C (around the boiling point of zinc) for 30 min and finally to 1050 °C for 30 min. The above samples were thoroughly washed with hydrochloric acid and deionized water to remove the effects of residual zinc to obtain As-DC1-1050. Notably, it is necessary to place an alkaline solution such as NaOH to treat the arsenic-containing tail gas to protect the safety of experimenters. In addition, good protective equipment such as gloves and masks should be worn when moving solid drugs such as NaAsO₂. Similarly, As-RC1-1050 was synthesized without the addition of α -D-glucose. DC support was also synthesized without the addition of NaAsO₂.

Synthesis of Se-DC1-1050, I-DC1-1050, P-DC1-1050 and Br-DC1-1050. Similarly, NaAsO₂ was also replaced with SeO₂, I₂, NaH₂PO₂ and Br₂ to synthesize Se-DC1-1050, I-DC1-1050, P-DC1-1050 and Br-DC1-1050. Notably, to facilitate the relatively gentle

evaporation of SeO₂, the temperature was raised to 690 °C (around the SeO₂ boiling point temperature) for 40 min under the Ar atmosphere. To allow for relatively gentle evaporation of I₂, the temperature was raised to 200 °C (around the I₂ boiling point temperature) for 40 min under the Ar atmosphere. Similarly, NaH₂PO₂ was raised to 230 °C and Br₂ was raised to 60 °C. The remaining conditions were identical to those for the synthesis of As-DC1-1050. Since Br₂ is a liquid, Br₂ was poured into a crucible as a source of bromine.

Research on degradation inhibition. According to our previous work, to collect an adequate amount of As-DC1-1050 after the accelerated durability test (ADT), the glassy carbon (GC) electrode was replaced by a platinum sheet (PS) electrode with an effective area of 2 cm \times 2 cm². The loading of As-DC1-1050 on the PS electrode was 1.8-2.2 mg cm⁻². After 35,000 cyclic voltammetry (CV) cycles, As-DC1-1050 was scraped off and washed several times with ethanol and deionized water, then dried and collected. The catalyst was then heated to 400 °C for 30 min in H₂/Ar atmosphere to furnish As-DC1-1050-R1. Similarly, As-RC1-1050-R1 can be obtained with such an operation.

Catalyst characterizations. The X-ray photoelectron spectroscopy (XPS) analysis was carried out on an ESCALAB 250Xi (Thermo Fisher Scientific, USA) spectrometer with an Al Kα radiation source. The binding energies of As in As-DC1-1050 at different potentials were further analyzed with reference to a previous report³. The morphologies and X-ray energy dispersive spectroscopy (EDS) analyses of the As-based non-metal catalysts were characterized using an objective spherical aberration-corrected transmission electron microscopy (AC-TEM, FEI Titan ChemiSTEM) and TEM (Talos F200S and Super-X EDS), respectively. PANalytical X'Pert Powder and inductively coupled plasma optical emission spectrometer (ICP-OES 6300, USA) were used to collect the X-ray diffraction (XRD) patterns (Spectris Pte. Ltd, Netherlands) and the actual As loadings, respectively. A multistation surface and porosity analyzer max-II (MicrotracBEL, Japan) and Raman spectrometer equipped with laser (532 nm) in the wavenumber of 500-2500 cm⁻¹ (Horiba Jobin Yvon S.A.S.) were performed to characterize the As-based non-metal catalysts. The X-ray absorption spectra of the As K-edge were processed and fitted with Athena and Artemis programs.

Electrochemical measurements. A three-electrode system (Model AFMSRCE) was

used to measure the ring and disk currents. A rotating ring-disk electrode (RRDE) with an outside diameter of 5.50 mm or a GC electrode with a dimension of 5 mm served as the working electrode. The electrochemical LSV and CV data were quantified to evaluate ORR performance. A carbon rod was used as counter electrode and Ag/AgCl (3M KCl solution) was worked as reference electrode. According to the following formula, all reported potentials were calibrated against the reversible hydrogen electrode (RHE) reference: $E_{RHE}=E_{Ag/AgCl}+0.059pH+0.197$. 5.5 mg As-DC1-1050 or 1.5 mg 20 wt% Pt/C was dispersed in a mixture of ethanol (980 µL) and 5 wt% Nafion (20 µL) by ultrasonication for at least 35 min. 10 µL of prepared catalyst ink was transferred to the working electrode. Voltage cycling between 0.6 and 1.0 V was used to conduct the ADT of the As-DC1-1050 in O₂-saturated 0.1 M KOH. Electrochemical impedance spectroscopy (EIS) measurements were conducted in O₂-saturated electrolyte solutions with an alternating current perturbation voltage of 5 mV in the frequency range of 1000 kHz to 0.1 Hz³⁻⁵. The potential of the ring electrode was maintained at 1.2 V (vs. RHE).

Quasi-operando XPS of As-DC1-1050 working at applied potentials. According to the previous report³, the back side of the Si_3N_4 window where the catalyst was deposited on the Au/Ti layer faced into the interior of the electrochemical cell. An Ag/AgCl reference electrode was placed in the Luggin capillary and a carbon rod was prepared as a counter electrode. To avoid Cl⁻ contamination, the Ag/AgCl electrode was fixed on one side of the cell. The As-DC1-1050 catalyst was placed in 0.1 M O₂-saturated electrolyte and then the reactor was vacuumized. At each set potential, the electrode was first polarized for 4 min until it was stable, and then XPS signals were collected at different applied potentials (0.5 V, 0.7 V, 0.9 V, 1.1 V vs. RHE).

Electrochemical measurements for zinc-air battery. Electrochemical performance tests were performed on a self-assembled ZAB. 6 mg of catalyst (As-DC1-1050 or 20% Pt/C) and 20 uL of a 5 wt% Nafion solution were dispersed into 580 uL of ethanol solution by sonication for 45 min. Afterwards, the ink was transferred to hydrophobic carbon paper (TGPH 120) with a catalyst loading of 1 mg cm⁻². Polished zinc foil and 6.0 M KOH containing 0.2 M zinc acetate were used as anode and electrolytes for ZAB, respectively.

Electrochemical measurements for fuel cells. As-DC1-1050 and 20% Pt/C were scattered in a compound solution of FAA-3 ionomer (5 wt%), isopropanol and deionized

water to formalize cathodic and anodic inks (4 mL) of HOFCs, respectively. The ink was sonicated for 30-50 min and then uniformly sprayed on both sides of an anion exchange membrane with an active area of 4 cm⁻². The catalyst loadings were 3.5 mg cm⁻² of As-DC1-1050 for the cathode and 0.4 mg cm⁻² of Pt/C for the anode. The capability of assembled HOFCs was analyzed at Riror RG100 operating at 65 °C. Constant H₂ (100 sccm) and O₂ (200 sccm) flow rates were delivered with a humidity of 100% at a back pressure of 1.0 bar. The As-DC1-1050 cathode was also operated at a practical fuel cell voltage of 0.67 V for 290 h to investigate its durability. A constant flow of hydrogen (100 sccm) and air (200 sccm) was passed into HOFCs at 100% humidity in the stability tests. Then As-DC1-1050-290 was then heated to 400 °C for 30 min in H₂/Ar atmosphere. Next, the As-DC1-1050-290-R cathode continued to be operated at a constant voltage of 0.67 V.

Computational methods. First-principles calculations were carried out by the Vienna ab initio simulation package (VASP-5.4.4)⁶. The Perdew–Burke–Ernzerhof (PBE) version of the generalized gradient approximation (GGA) was employed for the exchange– correlation interaction⁷. Electron spin polarization was considered in all the calculations. During structure relaxation, the iterative convergence of the energy was set to 10^{-5} eV and each atom was fully relaxed until the residual forces were converged to 0.01 eV/Å. The energy cut-off was chosen as 450 eV. The partial carbon defect model calculated in this paper refers to the previous literature^{8, 9}. A vacuum slab of 20 Å was utilized along the z-direction to avoid the mirror interaction between periodic images. Considering the porous configurations of the As-C-based non-metal catalysts, the van der Waals interaction was involved by using the empirical correction in the Grimme's scheme (DFT+D3)⁷. The Brillouin-zone integration was sampled by a Γ -centered 1 × 2 × 1 k-point mesh for structural relaxation, and a denser 2 × 4 × 2 mesh was used for the electronic property calculations, respectively.

2. Supplementary Figures.

Figure S1. HAADF image of As-DC1-1050. Pentagons, hexagons and heptagons are marked in yellow, green and red respectively.

Figure S2. Optical pictures of the as synthesized As-DC1-1050.

Figure S3. XRD patterns of the as synthesized RC, DC, As-RC1-1050, As-DC1-1050, As-DC2-1050, Se-DC1-1050, I-DC1-1050, Br-DC1-1050, P-DC1-1050 and As-DC1-1050 after 35,000 cycles.

Figure S4. FT-EXAFS fitting curves of As K-edge for As-RC1-1050.

Figure S5. WT of the k^2 -weighted EXAFS data of (a) As-DC1-1050, (b) As-RC1-1050 and (c) As foil.

Figure S6. WT of the k²-weighted EXAFS data of (a-b) NaAsO₂ and (c-d) Na₃AsO₄.

Figure S7. An oxygen reduction performance comparison of RC and DC in 0.1 M KOH.

Figure S8. ORR polarization curves of As-DC1-1050 transferred to a glass carbon (GC) electrode and a platinum sheet (PS) electrode after 10,000 CV cycles, respectively.

Figure S9. (a) XPS survey of As-DC1-1050, As-DC1-1050 after 35,000 cycles and As-DC1-1050-R1 samples. (b) Deconvoluted carbon 1s spectrum of As-DC1-1050 after 35,000 cycles.

Figure S10. FT-IR spectra of As-DC1-1050, As-DC1-1050 after 35,000 cycles and As-DC1-1050-R1.

Figure S11. (a) TEM, (b) EDS images and (c) HAADF-STEM images of Se-DC1-1050. (d) TEM, (e) EDS images and (f) HAADF-STEM images of I-DC1-1050. HAADF-STEM images of (g) P-DC1-1050 and (h) Br-DC1-1050.

Figure S12. Methanol tolerance tests of 20% Pt/C and As-DC1-1050. Commercial Pt/C is known to show disappointing methanol tolerance in practice, with a 13.1% drop in current density after methanol addition. In contrast, the current density of the As-DC1-1050 does not change significantly after the addition of methanol, with an overall drop of only 2.2%, demonstrating its excellent methanol tolerance.

Figure S13. Electrochemical impedance spectroscopy curves of As-based non-metal catalysts in O_2 -saturated 0.1 M HClO₄.

Figure S14. An oxygen reduction performance comparison of RC, 20% Pt/C and As-DC1-1050 in 0.1 M HClO₄.

Figure S15. FT-EXAFS spectra of As-DC1-1050, As-DC1-1050-290, As-DC1-1050-290-R and NaAsO₂.

Figure S16. (a) TEM and (b) EDS images of As-DC1-1050-290. (c) TEM and (d) EDS images of As-DC1-1050-290-R.

Figure S17. (a) Open circuit voltages, (b) rate capabilities and (c) galvanostatic cycling at 5 mA cm⁻² of Zn-air battery using As-DC1-1050 and 20% Pt/C as the cathode catalyst.

Figure S18. XPS of As-DC1-1050-290 at different potentials in 0.1 M HClO₄. The red and green dotted lines represent the binding energy positions of As in As-DC1-1050 and As-DC1-1050-290, respectively.

Figure S19. Different models for DFT calculations. (a) Arsenic at the edge site 1 of the adjacent five-carbon ring and seven-carbon ring (C57-1As). (b) Quaternary arsenic in the bulk phase (C6-2As). (c) Quaternary arsenic on the edge (C6-3As). (d) Pyridine arsenic (C6-4As). (e) Pyrrolic arsenic (C5-5As). (f) Arsenic at the edge site 6 of the seven-carbon ring (C7-6As). (g) Arsenic at the edge site 7 of the adjacent five-carbon ring and seven-carbon ring (C57-7As). (h) Carbon at the edge site 8 and 9 of the adjacent five-carbon ring and seven-carbon ring and seven-carbon ring (C57-8C and C57-9C). The carbon, hydrogen and arsenic elements are denoted in brown, pink and green balls, respectively.

Figure S20. Differential charge density of C57-9C. Cyan and yellow represent electron depletion and accumulation; the iso-surface value is $0.003 \text{ e} \text{ Å}^{-3}$.

Figure S21. Free-energy diagrams and key reaction intermediates of C57-1As, C6-4As and C5-5As at U = 0 V. C57-1As exhibits the largest OH* adsorption free energy ($\Delta G_{OH}^* = 0.75$ eV) of the seven arsenic-based catalysts, indicating that the structure of C57-1As facilitates the desorption of OH* from the active site.

Figure S22. Optimized atomic configurations of three intermediates (OOH*, O*, and OH*) adsorbed on C6-4As.

C57-1As				
	Sample	Atoms	Bader	ΔQ
			electrons	
	C57-1As	1As	4.424	-0.576
bed bed bed C6-4As		1C	4.361	0.361
		2C	4.378	0.378
4As	C6-4As	4As	4.324	-0.676
		3C	4.374	0.374
		4C	4.378	0.378
	C5-5As	5As	4.405	-0.595
		5C	4.369	0.369
SC 5As		6C	4.361	0.361

Figure S23. Bader charge analysis of C57-1As, C6-4As and C5-5As.

Figure S24. The projected density of states (PDOS) of C57-1As, C6-4As, and C5-5As. The Fermi level is set to zero, indicated by the black dashed line.

Figure S25. The models in which (a) oxygen and (b) hydroxyl groups located near C57-1As, respectively.

3. Supplementary Tables.

Table S1. The content of As, Se and I in the synthesized non-metal catalysts measured by ICP.

<u>e</u> j iei .							
Sample	As-DC1-	As-RC1-	As-DC2-	Se-DC1-	I-DC1-	P-DC1-	Br-DC1-
	1050	1050	1050	1050	1050	1050	1050
content (wt%)	9.17%As	2.26% As	4.31% As	11.42% Se	13.78% I	9.61% P	12.57% Br

Sample Dath		Coordination	Interatomic	Debye-	$\Delta F_{*}(aV)$
Sample	Faui	Number	Distance (Å)	Waller factor (10^{-3} Å^2)	$\Delta E_0(ev)$
As-RC1-1050	As-C	2.3±0.3	1.76 ± 0.02	6.5±2.3	-1.15±0.6
As-DC1-1050	As-C	2.1±0.3	1.77 ± 0.02	9.5±2.7	2.5±1.4

Table S2. EXAFS fitting results of As-DC1-1050 and As-RC1-1050.

R factor is used to value the goodness of the fitting, R factor ≤ 0.02 . ΔE_0 is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model).

Sample	After 10,000 cycles	After 20,000 cycles	After 35,000 cycles
As-DC1-1050	0.08 wt%	0.13 wt%	0.16 wt%
As-RC1-1050	0.07 wt%	0.11 wt%	0.15 wt%
As-DC2-1050	0.19 wt%	0.31 wt%	0.40 wt%

Table S3. The content of dissolved As of As-DC1-1050, As-RC1-1050 and As-DC2-1050 measured by ICP.

Sample	Eonset	$E_{1/2}$	Stability	Ref.
1	(V vs RHE)	(V vs RHE)	2	
Se@NC-1000	0.95	0.85	negligible (5,000 cycles)	10
$N_{0.54}$ -Z ₃ /M ₁ -	0.96	0.825	current drop: 2.6% (24 h)	11
900				
DG	0.91	0.76	-	9
NGM	0.89	0.77	current drop: 1.5% (8 h)	8
P-G	0.912	0.737	current drop: 12% (20,000 s)	12
NC@Co-NGC	0.92	0.82	-	13
DSNCs				
$Fe-N_x/C$	0.95	0.837	-	14
N-CNTs-650	0.94	0.85	current drop: 5% (40,000 s)	15
NPCN-900	0.92	0.78	current drop: 15.8% (12,000 s)	16
Carbon-L	0.86	0.7	current drop: 25% (25,000 s)	17
NDC-1000	0.96	0.86	-	18
FePhen@MOF-	1.03	0.86	current loss: 100 mA cm ⁻²	19
Ar NH3			(10,000 cycles)	
NCNTFs	0.97	0.87	7 mV (5,000 cycles)	20
N-HC@G-900	1.0	0.85	negligible (10,000 cycles)	21
NPMC-1000	0.94	0.85	negligible (11,000 s)	22
N-GRW	0.92	0.84	15 mV (2,000 cycles)	23
SHG	1.01	0.87	current drop: 7% (100 h)	24
N-doped CNT	0.91	0.8	-	25
arrays				
Fe/SNC	<1	0.86	current drop: 14% (3,000s)	26
Zn/CoN-C	1.004	0.861	12 mV (10,000 cycles)	27
As-DC1-1050	1.016	0.901	23 mV (35,000 cycles);	This
			4 mV (35,000 cycles after re- calcination)	work

Table S4. Comparison of $E_{1/2}$ and onset potential of As-DC1-1050 with reported non-
metal/non-precious metal catalysts in 0.1 M KOH.

Sample	Power density (mW cm ⁻²)	Stability	Ref.
Fe-AC-CVD	601	current drop: 13% (319 h at 80 °C)	4
Pt ₁ -N/BP	680	current drop: 26% (200 h at 80 °C)	28
Fe/N/C-SCN	940	current drop: 71.88% (100 h at 80 °C)	29
Fe/N/C	-	current drop: 56% (100 h at 80 °C)	30
Zn/CoN-C	705	current drop: no attenuation (8 h)	27
Fe/PtCo-NC/TiO _x	952.2	current drop: 12.7% (150 h at 65 °C)	2
PFeTTPP-1000	730	current drop: >87.5% (100 h at 80	31
		°C)	
py-B12/C	370	current drop: 15% (100 h at 70 °C)	32
As-DC1-1050	701.9	current drop: 9.38% (290 h);	This
		9.86% (590 h, re-calcination after 300	work
		h at 65 °C)	

 Table S5. Summary of hydrogen-oxygen fuel cell performance.

Sample	Open circuit voltage (V)	Power density (mW cm ⁻²)	Specific capacity (mAh g_{Zn}^{-1} ; J=10 mA/cm ²)	Ref.
Fe-Se/NC	1 47	135	<u>764</u>	33
Se@NC-1000	1.45	176.9	801.3	10
Fe-N/P-C-700	1.42	133.2	723.6 (J=100)	34
D-CMO	1.46	149	-	35
IOSHs-NSC-	1.497	133	738	36
Co_9S_8				
SA-PtCoF	1.31	125	808	37
Fe-SAs/NPS-HC	1.45	195	-	38
FeNiCo@NC-P	1.36	112	807	39
FeP/Fe ₂ O ₃ @NPC	1.42	130	717	40
А				
FeNC-S-Fe _x C /Fe	1.41	149.4	663	41
S,N-Fe/N/C-CNT	1.25	102.7	-	42
Fe-N _x -C	1.49	96.4	641	43
As-DC1-1050	1.44	179.8	806.5	This
				work

 Table S6. Summary of Zinc-air battery performance.

	2	5	
Model	ΔG_{OH} *	ΔG_{O}^{*}	ΔG_{OOH} *
C57-1As	0.75	1.85	4.1
C6-2As	-1.54	-0.65	1.94
C6-3As	-0.09	1.08	3.41
C6-4As	-0.02	1.78	3.36
C5-5As	0.45	1.94	2.68
C7-6As	-0.45	1.54	3.05
C57-7As	0.41	1.68	3.8
C57-8C	1.36	2.35	5.22
C57-9C	1.38	2.36	5.2

Table S7. Adsorption free energies (eV) of OH, O and OOH over different active sites on As-C-based non-metal catalysts and carbon defect catalysts (U = 0 V).

The four elementary steps of ORR as the following steps:

Step 1: $O_2 + H^+ + e^- + * \rightarrow OOH^*$

Step 2: OOH* + H+ + $e^- \rightarrow O^* + H_2O$

Step 3: $O^* + H^+ + e^- \rightarrow OH^*$

Step 4: $OH^* + H^+ + e^- \rightarrow * + H_2O$

Table S8. Adsorption free energies (eV) of OH, O and OOH over As site on As-DC1-1050 after oxidation (U = 0 V).

Model	ΔG_{OH}^{*}	ΔG_{O}^{*}	ΔG_{OOH} *
C57-1As	0.75	1.85	4.1
C57-1As-O	0.27	1.81	3.78
C57-1As-OH	1.02	0.98	4.28

Table S9. Difference in bond lengths (L) between adsorption behavior of OH* and OOH* on C57-1As, C57-1As-O and C57-1As-OH, respectively.

Model	$L_{\text{O-O}} \text{ of OOH}^* (\text{\AA})$	$L_{\text{O-As}}$ of OH* (Å)
C57-1As	1.47	1.85
C57-1As-O	1.47	1.84
C57-1As-OH	1.48	1.86

The bond lengths of the adsorbed oxygen intermediates are not significantly different in the three models, indicating that differences in geometry are not a primary influence.

4. Supplementary References

- L. Zhao, Y. Zhang, L. B. Huang, X. Z. Liu, Q. H. Zhang, C. He, Z. Y. Wu, L. J. Zhang, J. P. Wu, W. L. Yang, L. Gu, J. S. Hu and L. J. Wan, *Nat. Commun.*, 2019, 10.
- Y. J. Luo, Y. W. Wang, Y. Y. Wang, H. M. Huang, L. Zhang, H. J. Zhang and Y. Wang, *Appl. Catal. B-Environ.*, 2022, 317.
- R. J. Gao, J. Wang, Z. F. Huang, R. R. Zhang, W. Wang, L. Pan, J. F. Zhang, W. K. Zhu, X. W. Zhang, C. X. Shi, J. Lim and J. J. Zou, *Nat. Energy*, 2021, 6, 614-623.
- S. W. Liu, C. Z. Li, M. J. Zachman, Y. C. Zeng, H. R. Yu, B. Y. Li, M. Y. Wang, J. Braaten, J. W. Liu, H. M. Meyer, M. Lucero, A. J. Kropf, E. E. Alp, Q. Gong, Q. R. Shi, Z. X. Feng, H. Xu, G. F. Wang, D. J. Myers, J. Xie, D. A. Cullen, S. Litster and G. Wu, *Nat. Energy*, 2022, 7, 652-663.
- 5. Z. Y. Jin, P. P. Li, Y. Meng, Z. W. Fang, D. Xiao and G. H. Yu, *Nat. Catal.*, 2021, 4, 615-622.
- 6. G. Kresse and J. Hafner, *Phys Rev B Condens Matter*, 1993, 47, 558-561.
- 7. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys Rev Lett*, 1996, 77, 3865-3868.
- C. Tang, H. F. Wang, X. Chen, B. Q. Li, T. Z. Hou, B. S. Zhang, Q. Zhang, M. M. Titirici and F. Wei, *Adv. Mater.*, 2016, 28, 6845-+.
- Y. Jia, L. Z. Zhang, A. J. Du, G. P. Gao, J. Chen, X. C. Yan, C. L. Brown and X. D. Yao, *Adv. Mater.*, 2016, 28, 9532-+.
- 10. H. Hu, J. J. Wang, B. F. Cui, X. R. Zheng, J. G. Lin, Y. D. Deng and X. P. Han, *Angew. Chem. Int. Ed.*, 2022, **61**.
- 11. X. G. Li, B. Y. Guan, S. Y. Gao and X. W. Lou, *Energ. Environ. Sci.*, 2019, **12**, 648-655.
- 12. L. Tao, Q. Wang, S. Dou, Z. L. Ma, J. Huo, S. Y. Wang and L. M. Dai, *Chem Commun*, 2016, **52**, 2764-2767.
- 13. S. H. Liu, Z. Y. Wang, S. Zhou, F. J. Yu, M. Z. Yu, C. Y. Chiang, W. Z. Zhou, J. J. Zhao and J. S. Qiu, *Adv. Mater.*, 2017, **29**.
- 14. N. Ramaswamy, U. Tylus, Q. Y. Jia and S. Mukerjee, *J. Am. Chem. Soc.*, 2013, **135**, 15443-15449.
- J. S. Meng, C. J. Niu, L. H. Xu, J. T. Li, X. Liu, X. P. Wang, Y. Z. Wu, X. M. Xu, W. Y. Chen, Q. Li, Z. Z. Zhu, D. Y. Zhao and L. Q. Mai, *J. Am. Chem. Soc.*, 2017, 139, 8212-8221.
- H. Jiang, Y. Q. Wang, J. Y. Hao, Y. S. Liu, W. Z. Li and J. Li, *Carbon*, 2017, 122, 64-73.
- 17. P. Zhang, F. Sun, Z. H. Xiang, Z. G. Shen, J. Yun and D. P. Cao, *Energ. Environ. Sci.*, 2014, 7, 442-450.
- Q. X. Lai, J. Zheng, Z. M. Tang, D. Bi, J. X. Zhao and Y. Y. Liang, Angew. Chem. Int. Ed., 2020, 59, 11999-12006.
- 19. K. Strickland, M. W. Elise, Q. Y. Jia, U. Tylus, N. Ramaswamy, W. T. Liang, M. T. Sougrati, F. Jaouen and S. Mukerjee, *Nat. Commun.*, 2015, **6**.
- 20. B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou and X. Wang, Nat. Energy, 2016, 1.

- J. Sun, S. E. Lowe, L. J. Zhang, Y. Z. Wang, K. L. Pang, Y. Wang, Y. L. Zhong, P. R. Liu, K. Zhao, Z. Y. Tang and H. J. Zhao, *Angew. Chem. Int. Ed.*, 2018, 57, 16511-16515.
- J. T. Zhang, Z. H. Zhao, Z. H. Xia and L. M. Dai, *Nat. Nanotechnol.*, 2015, 10, 444-452.
- H. B. Yang, J. W. Miao, S. F. Hung, J. Z. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai and B. Liu, *Sci Adv*, 2016, 2.
- 24. C. G. Hu and L. M. Dai, Adv. Mater., 2017, 29.
- K. P. Gong, F. Du, Z. H. Xia, M. Durstock and L. M. Dai, *Science*, 2009, **323**, 760-764.
- H. J. Shen, E. Gracia-Espino, J. Y. Ma, K. T. Zang, J. Luo, L. Wang, S. S. Gao, X. Mamat, G. Z. Hu, T. Wagberg and S. J. Guo, *Angew. Chem. Int. Ed.*, 2017, 56, 13800-13804.
- 27. Z. Y. Lu, B. F. Wang, Y. F. Hu, W. Liu, Y. F. Zhao, R. O. Yang, Z. P. Li, J. Luo, B. Chi, Z. Jiang, M. S. Li, S. C. Mu, S. J. Liao, J. J. Zhang and X. L. Sun, *Angew. Chem. Int. Ed.*, 2019, **58**, 2622-2626.
- J. Liu, M. G. Jiao, L. L. Lu, H. M. Barkholtz, Y. P. Li, Y. Wang, L. H. Jiang, Z. J. Wu, D. J. Liu, L. Zhuang, C. Ma, J. Zeng, B. S. Zhang, D. S. Su, P. Song, W. Xing, W. L. Xu, Y. Wang, Z. Jiang and G. Q. Sun, *Nat. Commun.*, 2017, 8.
- Y. C. Wang, Y. J. Lai, L. Song, Z. Y. Zhou, J. G. Liu, Q. Wang, X. D. Yang, C. Chen, W. Shi, Y. P. Zheng, M. Rauf and S. G. Sun, *Angew. Chem. Int. Ed.*, 2015, 54, 9907-9910.
- 30. M. Lefevre, E. Proietti, F. Jaouen and J. P. Dodelet, Science, 2009, 324, 71-74.
- S. W. Yuan, J. L. Shui, L. Grabstanowicz, C. Chen, S. Commet, B. Reprogle, T. Xu, L. P. Yu and D. J. Liu, *Angew. Chem. Int. Ed.*, 2013, **52**, 8349-8353.
- S. T. Chang, C. H. Wang, H. Y. Du, H. C. Hsu, C. M. Kang, C. C. Chen, J. C. S. Wu, S. C. Yen, W. F. Huang, L. C. Chen, M. C. Lin and K. H. Chen, *Energ. Environ. Sci.*, 2012, 5, 5305-5314.
- 33. Y. Wang, J. Wu, S. H. Tang, J. R. Yang, C. L. Ye, J. Chen, Y. P. Lei and D. S. Wang, Angew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202219191.
- K. Yuan, D. Lutzenkirchen-Hecht, L. B. Li, L. Shuai, Y. Z. Li, R. Cao, M. Qiu, X. D. Zhuang, M. K. H. Leung, Y. W. Chen and U. Scherf, *J. Am. Chem. Soc.*, 2020, 142, 2404-2412.
- F. Yang, J. H. Xie, D. W. Rao, X. Q. Liu, J. X. Jiang and X. H. Lu, *Nano Energy*, 2021, 85.
- 36. K. Tang, C. Z. Yuan, Y. Xiong, H. B. Hu and M. Z. Wu, *Appl. Catal. B-Environ.*, 2020, **260**.
- Z. li, W. H. Niu, Z. Z. Yang, N. Zaman, W. Samarakoon, M. Y. Wang, A. Kara, M. Lucero, M. V. Vyas, H. Chao, H. Zhou, G. E. Sterbinsky, Z. X. Feng, Y. G. Du and Y. Yang, *Energ. Environ. Sci.*, 2020, 13, 884-895.
- Y. J. Chen, S. F. Ji, S. Zhao, W. X. Chen, J. C. Dong, W. C. Cheong, R. A. Shen, X. D. Wen, L. R. Zheng, A. I. Rykov, S. C. Cai, H. L. Tang, Z. B. Zhuang, C. Chen, Q. Peng, D. S. Wang and Y. D. Li, *Nat. Commun.*, 2018, 9.
- 39. D. Z. Ren, J. Ying, M. L. Xiao, Y. P. Deng, J. H. Ou, J. B. Zhu, G. H. Liu, Y. Pei, 41

S. Li, A. M. Jauhar, H. L. Jin, S. Wang, D. Su, A. P. Yu and Z. W. Chen, *Adv. Funct. Mater.*, 2020, **30**.

- K. Z. Wu, L. Zhang, Y. F. Yuan, L. X. Zhong, Z. X. Chen, X. Chi, H. Lu, Z. H. Chen, R. Zou, T. Z. Li, C. Y. Jiang, Y. K. Chen, X. W. Peng and J. Lu, *Adv. Mater.*, 2020, **32**.
- 41. Y. Y. Qiao, P. F. Yuan, Y. F. Hu, J. N. Zhang, S. C. Mu, J. H. Zhou, H. Li, H. C. Xia, J. He and Q. Xu, *Adv. Mater.*, 2018, **30**.
- P. Z. Chen, T. P. Zhou, L. L. Xing, K. Xu, Y. Tong, H. Xie, L. D. Zhang, W. S. Yan, W. S. Chu, C. Z. Wu and Y. Xie, *Angew. Chem. Int. Ed.*, 2017, 56, 610-614.
- 43. J. X. Han, X. Y. Meng, L. Lu, J. J. Bian, Z. P. Li and C. W. Sun, *Adv. Funct. Mater.*, 2019, **29**.