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Lorenz number calculation in details:

In general, the total () consists of the electronic thermal conductivity (e) and 

lattice thermal conductivity (L). The electronic part e is directly proportional to the 

electrical conductivity σ through the Wiedemann-Franz relation, e = LσT, where L is 

Lorentz number and its value is calculated by SPB model. The Lorenz number can be 

given as: 1, 2

(1)
L =

k2
B

e2((r + 3)Fr + 2(η)

(r + 1)Fr(η)
- [(r + 2)Fr + 1(η)

(r + 1)Fr(η) ]2)
For the Lorenz number calculation, we should get reduced Fermi energy η 

firstly. The calculation of η can be derived from the measured Seebeck 

coefficients by using the following relationship: 

(2)
                       

S =±
kB

e ((r + 2)Fr + 1(η)

(r + 1)Fr(η)
- η)

where Fn(η) is the n−th order Fermi integral,

(3)
                           

Fn(η) =
∞

∫
0

χn

1 + eχ - η
dχ

where e is the electron charge, kB is the Boltzmann constant, h is the Planck 

constant, r is the scattering factor. Here, r is 0 since acoustic phonon scattering has been 

assumed as the main carrier scattering mechanism near room temperature (RT). Lorentz 

number can be obtained by combining equations (1), (2) and (3).
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Table S1. Rietveld refinement details of the Sn0.96Ge0.04Se0.96S0.04.

Atom Site x y z Occupancy FWHM
(111)

Sn 4c -0.3812 0.2500 0.3995 0.48

Ge 4c -0.3812 0.2500 0.3995 0.02

Se 4c 0.3607 0.2500 0.0153 0.48

S 4c 0.3607 0.2500 0.0153 0.02

0.1668
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Table S2. Lattice parameters for Sn1-xGexSe1-xSx (x=0, 0.02, 0.04, 0.05).

Compositions a（Å） b（Å） c（Å） Volume（Å3）

SnSe 11.50856 4.15772 4.43934 212.42

x=0.02 11.50585 4.15102 4.43975 212.05

x=0.04 11.49681 4.15403 4.43467 211.79

x=0.05 11.49733 4.15067 4.44046 211.91
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Table S3. The calculated and measured densities for pure SnSe and Sn1-xGexSe1-xSx 

nanorods.

Compositions Theoretical Density 

(ρ, g/cm3)

Actual Density 

(ρ, g/cm3)

Density

%

SnSe 6.19 6.03 97.42

x=0.02 6.16 5.89 95.62

x=0.04 6.13 5.86 95.60

x=0.05 6.11 5.78 94.60
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Figure S1. SEM images of pristine SnSe synthesized by the same method. Microplates 

can be clearly observed.
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Figure. S2. SEM of Sn0.96Ge0.04Se0.96S0.04 nanorods and Elemental mapping.
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Figure S3. XPS core-level spectra of (a) Sn2+ 3d, (b) Se2- 3d peak from 

Sn0.96Ge0.04Se0.96S0.04 nanorods.
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Figure S4. XRD patterns of SnSe and Sn0.96Ge0.04Se0.96S0.04 parallel to the pressure 

direction (//) and perpendicular to the pressure direction ().
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Figure S5. (a) Electronic thermal conductivity (e), (b) Lorenz number for Sn1-xGexSe1-

xSx nanorods as a function of temperature.
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Figure S6. Comparison of Seebeck coefficient of Sn1-xGexSe1-xSx nanorods with other 

reported SnSe-based materials. 
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Figure S7. Electronic density of states of Sn24Se24, Sn24Se23S, Sn23GeSe24 and 

Sn23GeSe23S. 
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Figure S8. Comparison of PF for Sn0.96Ge0.04Se0.96S0.04 nanorods with SnSe-based 
systems.
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Figure S9. Repeat measurement results of (a) electrical conductivity, (b) Seebeck 

coefficient, (c) thermal conductivity, (d) ZT of Sn0.96Ge0.04Se0.96S0.04.
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Figure S10. XRD patterns for Sn0.96Ge0.04Se0.96S0.04 nanorods before and after 

repetitive measurements.
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Figure S11. (a) Electrical conductivity (σ), (b) Seebeck coefficient (S), (c) Power factor 

(PF), (d) Total thermal conductivity (T), (e) Lattice thermal conductivity (L), (f) ZT 

for Sn0.96Ge0.04Se0.96S0.04 nanorods along the pressing direction (∥) and perpendicular 

to the pressing direction (⊥). 
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Figure S12. The Cp used for the ZT calculation.3 
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