Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

-

Support Information for

SERS-based Detection of an Organochlorine Pesticide Through Surface Plasmon-Induced C-C Coupling

Figure S1. Particle size distributions for AgNRs (A) length and (B) width.

Figure S2. Particle size distributions for (A) AgNPs, (B) AgPd_{2.5 mol%}NPs, (C) AgPd_{5.0 mol%}NPs and (D) AgPd_{10 mol%}NPs.

Figure S3. Representative HAADF-STEM for (A) AgPd_{2.5 mol%}NPs, (B) AgPd_{5.0 mol%}NPs, and (C) AgPd_{10 mol%}NPs.

Figure S4. Ordinary Raman spectrum of 4-IBN powder.

Figure S5. (A) SERS spectra of bare AgPd_{5.0 mol%}NPs (red; without 4-MPBA SAM) and 4-MPBA-functionalized AgPd_{5.0 mol%}NPs (blue; with 4-MPBA SAM) immersed in 5mM 4-IBN solution before (0 s) and after (60 s) 633 nm laser illumination. Power: 1.0 mW. The SERS spectrum of 4-MBPCN on AgPd_{5.0 mol%}NPs is also shown at the top for reference. **(B)** Evolution of the relative intensities of the bands at 1285 and 2225 cm⁻¹ (assigned to 4-MBPCN) to that at 1072 cm⁻¹ (combined contribution of 4-MBPCN and 4-MPBA) as a function of incoming laser power, determined from the integrated intensity of v_{CC} and v_{CN} in Figure 2E. **(C)** SERS spectra of 4-MPBA-functionalized AgPd_{5.0 mol%}NPs immersed in 5 mM 4-IBN solution kept in the dark (red, no laser illumination, at 0 h and 5 h) and kept under 633 nm laser irradiation (blue, upon laser illumination, at 0 s and 60 s). Power: 1.0 mW. The SERS spectrum of 4-MBPCN on AgPd_{5.0 mol%}NPs is also shown at the top for reference.

Figure S6. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on AgPd_{5.0 mol%}NPs in 5 mM 4-IBN solution upon exposure to 633 nm laser illumination over **(AI-AV)** 5 cycles of reactions. Power: 1.0 mW. **(B)** Temporal evolution of the relative intensity of the band at 2225 cm⁻¹ (assigned to 4-MBPCN) to that at 1072 cm⁻¹ (combined contribution of 4-MBPCN and 4-MPBA) over 5 cycles of reactions.

Figure S7. Ordinary Raman spectrum of (A) 4-CBN and (B) 4-BBN powder.

Figure S8. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on AgPd_{5.0 mol%}NPs in 10 mM 4-CBN, 4-BBN and 4-IBN solution upon exposure to 633 nm laser illumination. Power: 1.0 mW. **(B)** SERS spectra recorded at selected time intervals during Suzuki-Miyaura reaction.

Figure S9. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on AgPd_{5.0 mol%}NPs in 5 mM 4-IBN alkaline solution upon exposure to 633 nm laser illumination after addition of 0.0; 0.1; 0.2 and 0.5 M NaOH. Power: 1.0 mW. **(B)** SERS spectra recorded at selected time intervals during Suzuki-Miyaura reaction.

Figure S10. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on $AgPd_{x mol\%}NPs$ (x = 0.0; 2.5; 5.0 and 10 mol%) in 5 mM 4-IBN solution upon exposure to 633 nm laser illumination. Power: 1.0 mW. **(B)** SERS spectra recorded at selected time intervals during Suzuki-Miyaura reaction.

Figure S11. (A) Schematic illustration of SP-induced protodeboronation of 4-MPBA to TP on $AgPd_{x mol%}NPs$ surfaces. **(B)** Timedependent in situ SERS spectra of the protodeboronation of 4-MPBA SAM on **(B I)** AgNPs, **(B II)** AgPd_{2.5 mol%}NPs, **(B III)** AgPd_{5.0} mol%NPs, and **(B IV)** AgPd_{10 mol%}NPs under air upon exposure to 633 nm laser illumination. Power: 1.0 mW. **(C)** Temporal evolution of the relative intensity of the band 999 cm⁻¹ (assigned to TP) to that at 1072 cm⁻¹ (combined contribution of TP and 4-MPBA) as a function of the Pd loading on AgPd_{x mol%}NPs.

Figure S12. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM (left, red) and TP SAM (right, blue) on $AgPd_{5.0 \text{ mol}\%}$ NPs in 5 mM 4-IBN solution upon exposure to 633 nm laser illumination. Power: 1.0 mW. **(B)** Temporal evolution of the relative intensity of the band at 2225 cm⁻¹ (assigned to 4-MBPCN) to that at 1072 cm⁻¹ (combined contribution of 4-MBPCN and 4-MPBA) for 4-MPBA SAM (red) and TP SAM (blue) on $AgPd_{5.0 \text{ mol}\%}$ NPs.

Figure S13. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on AgPd_{5.0 mol%}NPs in 5 mM 4-CBN solution upon exposure to 633 nm laser illumination after addition of 0.0 and 0.1 M NaOH. Power: 1.0 mW. **(B)** SERS spectra recorded at selected time intervals during Suzuki-Miyaura reaction at incoming laser power equal to 1.0 mW. **(C)** Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on AgPd_{5.0 mol%}NPs in 5 mM 4-CBN solution upon exposure to 633 nm laser illumination of 0.1; 0.2 and 0.5 M NaOH. Power: 5.0 mW. **(D)** SERS spectra recorded at selected time intervals during at incoming laser power equal to 5.0 mW.

Figure S14. (A) Time-dependent in situ SERS spectra of the Suzuki-Miyaura coupling for 4-MPBA SAM on $AgPd_{x mol\%}NPs$ (x = 0.0; 2.5; 5.0 and 10 mol%) in 5 mM 4-CBN alkaline solution (0.1 M NaOH) upon exposure to 633 nm laser illumination. Power: 5.0 mW. **(B)** SERS spectra recorded at selected time intervals during Suzuki-Miyaura reaction.

Figure S15. Temporal evolution of the relative intensity of the band 2225 cm⁻¹ (feature peak of 4-MBPCN) to that at 1072 cm⁻¹ (contributed from both 4-MBPCN and 4-MPBA) as a function of **(A)** the NaOH concentration in a 5 mM 4-CBN alkaline solution at incoming 1.0 and 5.0 mW incoming laser power; and **(B)** the Pd loading on 4-MPBA-functionalized $AgPd_{x mol\%}NPs$ in 5 mM 4-CBN alkaline solution (0.1 M NaOH). Power: 5.0 mW. **(C)** SP-induced Suzuki-Miyaura reaction rate as a function of the Pd loading on $AgPd_{x mol\%}NPs$, determined from the slope of the initial linear portion of SERS intensity-time profiles in Figure S15B.

Figure S16. (A) Ordinary Raman spectrum of dichlobenil powder. **(B)** Temporal evolution of the relative intensity of the band at 2225 cm⁻¹ (assigned to 4-MBPCN) to that at 1072 cm⁻¹ (combined contribution of 4-MBPCN and 4-MPBA) for 4-MPBA SAM on AgPd_{5.0 mol%} NPs in 5.0 mM dichlobenil alkaline solution (0.1 M NaOH). **(C)** Laser power-dependent SERS spectra of 4-MPBA SAM on AgPd_{5.0 mol%} NPs in 5.0 mM dichlobenil alkaline solution (0.1 M NaOH). Integration time: 1.0 s. The intensity is normalized by the 1072 cm⁻¹ Raman peak. **(D)** Evolution of the relative intensity of the band at 2225 cm⁻¹ (assigned to 4-MBPCN) to that at 1072 cm⁻¹ (combined contribution of 4-MBPCN and 4-MPBA) as a function of incoming laser power, determined from the integrated intensity of v_{CN} in Figure S16B.