Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Supporting Information

 α -Fe₂O₃ nanomaterials strengthened the growth promoting effect of *Pseudomonas aurantiaca* strain JD37 on alfalfa via enhancing the nutrient interaction of plant-rhizobacteria symbiont

Tianying Zheng^a, Ting Wu^a, Jie Hou^{a*}, Daohui Lin^{a, b}

^a Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China

^b Zhejiang Ecological Civilization Academy, Anji 313300, China

*Corresponding author: J. Hou (<u>hou-jie@zju.edu.cn</u>)

Supporting Information consists of 8 pages, including 2 text, 4 tables and 6 figures.

Supporting Text

Text S1 Inorganic salt solution formulations

2.8 g/L Na₂HPO₄, 1.0 g/L KH₂PO₄, 0.5 g/L (NH₄)₂SO₄, 0.001 mg/L CuCl₂·2H₂O, 0.5 mg/L Na₂EDTA, 0.03 mg/L H₃BO₃, 0.02 mg/L CoCl₂·6H₂O, 0.2 mg/L FeSO₄·7H₂O, 0.01 mg/L ZnSO₄·7H₂O, 0.003 mg/L MnCl₂·4H₂O, 0.003 mg/L Na₂MoO₄·2H₂O, 0.002 mg/L NiCl₂·6H₂O, 0.113 μ g/L MgCl₂·6H₂O, 0.05 mg/L Ca(NO₃)₂·4H₂O. The chemicals were purchased from Beijing Coolaber technology Co., China.

Text S2 Genetical evidence for the conformation of JD37 in the rhizosphere

JD37 (Pseudomonas chlororaphis subsp. aurantiaca JD37) is a plant growthpromoting rhizobacterium, a Gram-negative bacterium isolated from potato rhizosphere soil (Shanghai, China)¹. To identify the colonization of JD37 in the rhizophere, the total DNA in soil was extracted with the E.Z.N.A soil DNA Kit (Omega Biotek, USA) by Majorbio. Inc., China. Then the DNA concentration and purity were evaluated by a UV-vis spectrophotometer (NanoDrop 2000, Thermo Scientific, USA), and the DNA quality was assessed by agarose gel electrophoresis. JD37^{1,2}, According to the information of a pair of primers (F: ACCACCTGGACTGATACTGA, R: AAGGGCCATGATGACTTG; **NCBI** Accession number: OM698823; Product size: 480 bp.) was designed. qPCR reactions were performed using a real-time PCR system (Applied Biosystems StepOnePlus, CA) to amplify the genes of JD37³. The program setup was as these three stages below: 95 °C for 10 min; 35 cycles of 95 °C for 10 s, 50 °C for 10 s, and then 72 °C for 20 s; followed by a melt curve for specificity verification. Amplification reactions were performed with a final volume of 23.8 µL including 10 µL of SYBR Green ChemoHS qPCR Mix (Monad, China), 0.4 μL of forward primer, 0.4 μL of reverse primer and 5 μ L of DNA template. The integrities and forms of soil DNA were analyzed with electrophoresis on a 1.0% agarose gel stained with 2% DuRed 10000× (Bridgen, China). Bands were visualized by a gel imaging system (Syngene, U.K.). Finally, the band brightness was quantified using image J software with 3 replicates.

Supporting Tables

Tube number (McFarland)	0.5	1	2	3	4
1% BaCl ₂ (mL)	0.05	0.1	0.2	0.3	0.4
1% H ₂ SO ₄ (mL)	9.95	9.9	9.8	9.7	9.6
the approximate bacteria	15	3	6	9	12
concentration (×108 CFU/mL)	1.3				
$OD_{600}*$	0.1006	0.1446	0.2375	0.3342	0.4037

Table S1 Resulting table of McFarland method

*The average of measured OD_{600} , n=3.

Table S2 Original soil minerals contents

Minerals	Contents
SiO ₂	$68.28\pm5.81\%$
Al_2O_3	$17.42\pm2.60\%$
Fe ₂ O ₃	$4.96\pm0.74\%$
K ₂ O	$2.41\pm0.92\%$
MgO	$1.36\pm1.37\%$
CaO	$1.09\pm0.63\%$
Na ₂ O	$1.02\pm1.94\%$
TiO ₂	$0.66\pm0.91\%$
P_2O_5	$0.15\pm0.32\%$

	Number of			
Treatment	differential	Metabolic pathways		
	metabolic pathways			
9F vs CKN	8	(1)Fatty acid biosynthesis; (2)Pyrimidine		
		metabolism; (3)Pentose and glucuronate		
		interconversions; (4)Butanoate metabolism;		
		(5)Glycerolipid metabolism; (6)Galactose		
		metabolism; (7)Starch and sucrose metabolism;		
		(8)Alanine, aspartate and glutamate metabolism		
9F vs 9N	4	(1)Fatty acid biosynthesis; (2)Pyrimidine		
		metabolism; (3)Pentose and glucuronate		
		interconversions; (4)Glycerolipid metabolism		
		(1)Pyrimidine metabolism; (2)Pentose and		
CKF vs	vs 4 N	glucuronate interconversions; (3)Ascorbate and		
CKN		aldarate metabolism; (4)Inositol phosphate		
		metabolism;		
9F vs CKF	3	(1)Fatty acid biosynthesis; (2)Pyrimidine		
		metabolism; (3)Pentose and glucuronate		
		interconversions		
9N vs CKN	3	(1)Pyrimidine metabolism; (2)Pentose and		
		glucuronate interconversions; (3)Butanoate		
		metabolism		

Table S3 Metabolic pathways with significant differences caused by treatments related to 1.5×10^9 CFU/plant JD37

	Number of			
Treatment	differential	Metabolic pathways		
	metabolic pathways			
		(1)Fatty acid biosynthesis; (2)Inositol		
8F vs CKN 7 8F vs 8N 2	7 2	phosphate metabolism; (3)Pentose and		
		glucuronate interconversions; (4)Pyrimidine		
		metabolism; (5)Ascorbate and aldarate		
		metabolism;(6)Butanoate metabolism;		
		(7)Alanine, aspartate and glutamate metabolism		
		(1)Pentose and glucuronate interconversions;		
		(2)Pyrimidine metabolism		
		(1)Pyrimidine metabolism; (2)Pentose and		
CKF vs	4	glucuronate interconversions; (3)Inositol		
CKN		phosphate metabolism; (4)Ascorbate and		
		aldarate metabolism		
8F vs CKF	2	(1)Ascorbate and aldarate metabolism;		
		(2)Inositol phosphate metabolism		
8N vs CKN	2	(1)Butanoate metabolism; (2)Alanine, aspartate		
		and glutamate metabolism		

Table S4 Metabolic pathways with significant differences caused by treatments related to 1.5×10^8 CFU/plantJD37

Supporting Figures

Fig S1. SEM (A), TEM (B) images and EDS analyses (C) of α -Fe₂O₃ (The data was adopted from our previous study⁴).

Fig. S2 JD37 growth kinetics within 32 h.

Fig. S4 Overall physical appearance of alfalfa plants in soil treated by JD37 with or without α -Fe₂O₃ NMs after 65 d. Abbreviations for different treatments: (1) CKF: 1000 mg/kg α -Fe₂O₃ NMs, (2) 7F: 1000 mg/kg α -Fe₂O₃ NMs and 1.5×10⁷ CFU/plant JD37, (3) 8F: 1000 mg/kg α -Fe₂O₃ NMs and 1.5×10⁸ CFU/plant JD37, (4) 9F: 1000 mg/kg α -Fe₂O₃ NMs and 1.5×10⁹ CFU/plant JD37, (5) CKN: The control group without NMs or PGPR; (6) 7N: 1.5×10⁷ CFU/plant JD37, (7) 8N: 1.5×10⁸ CFU/plant JD37, (8) 9N: 1.5×10⁹ CFU/plant JD37.

Fig. S5 The cotyledons, true leaf and compound leaf of alfalfa.

Fig. S6 Agarose gel electrophoresis of JD37 16s rRNA from the rhizosphere soil. P: control, F: treatment applied with 1000 mg/kg α -Fe₂O₃ NMs, J: treatment applied with 1.5×10⁹ CFU/plant JD37, F+J: treatment applied with 1000 mg/kg α -Fe₂O₃ NMs and 1.5×10⁹ CFU/plant JD37). The numbers below the bands represent the relative value of light intensity measured by the image J software.

References

- 1 Q. Y. Jiang, J. Xiao, C. H. Zhou, Y. L. Mu, B. Xu, Q. L. He and M. Xiao, Complete genome sequence of the plant growth-promoting rhizobacterium Pseudomonas aurantiaca strain JD37, *J. Biotechnol.*, 2014, **192**, 85-86.
- 2 L. Zhang, W. B. Chen, Q. Y. Jiang, Z. J. Fei and M. Xiao, Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparasion of genomics with three Pseudomonas strains, *Microbiol. Res.*, 2020, 237, 126483.
- 3 X. Lu, J. Hou, K. Yang, L. Zhu, B. Xing and D. Lin, Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials, *Environ. Sci. Technol.*, 2021, 55, 9305-9316.
- 4 C. Lei, L. Q. Zhang, K. Yang, L. Z. Zhu and D. H. Lin, Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging, *Environ. Pollut.*, 2016, **218**, 505-512.