## **Supplementary File**

Two Dimensional Ion-Molecule Chelation Reaction (2D-IMCR) to form the two dimensional dual optical sensor (2D-DOS): synthesis and application of the Phen-SnO<sub>2</sub> nanosheets for fluorometric and colorimetric sensing for Nitro-aromatic explosives



Figure. S1 TEM images for synthesized Phen-SnO $_2$  nanosheets.



Figure. S2 DLS results for the synthesized Phen-SnO $_2$  nanosheets.



**Figure. S3** XPS analysis for the synthesized Phen-SnO<sub>2</sub> nanosheets (a) C 1s spectra (b) XPS survey scan.



**Figure. S4** UV and PL spectra for comparison of the Phen-SnO<sub>2</sub> nanosheets with the precursor molecule, 1,10- phenanthroline (Control).



Figure. S5 Chemical structures of all NACs used for the application/detection studies.



Figure. S6 UV absorbance data of all NACs prior to the addition of the Phen-SnO $_2$  nanosheets.



Figure. S7 Colorimetric detection of PA using the Phen-SnO<sub>2</sub> nanosheets

# **Calculation Section**

### LOD calculations for PA detection

|           | Value   | Standard Error |  |  |
|-----------|---------|----------------|--|--|
| Intercept | 0.68135 | 0.87991        |  |  |
| Slope     | 0.17804 | 0.00609        |  |  |

## LOD (PA): K x SD/S

K=3

SD= Intercept/1000 = 0.68/1000 = 0.00068

LOD (PA)= 3 x 0.00068/0.178 = 0.011  $\mu$ M

Where,

K= Constant

SD= Standard Deviation of regression line

S= Slope

 Table S1. Comparison table of different fluorescent probes with Phen-SnO2 nanosheets for

 the detection of picric acid

| Fluorescent           | Synthesis        | Linear    | Limit of  | Quenching     | Ref  |
|-----------------------|------------------|-----------|-----------|---------------|------|
| Probe                 | Route            | Range     | Detection | Efficiency(%) |      |
| Carbon                | Microwave        | 0-20 μM   | 0.25 μM   | 75            | 1    |
| nanoparticles         | Pyrolysis        |           |           |               |      |
| N@CDs                 | Hydrothermal     | 1-75 μΜ   | 2.45 μM   | -             | 2    |
| Ni-OBA-Bpy-18         | Sonication       | 0-300 μL  | 66.43 ppb | 35            | 3    |
| MOF/GCE               |                  |           |           |               |      |
| NCDs Malic acid       | Microwave        | 0-1.6 μΜ  | 33nM      | -             | 4    |
| and Urea              | pyrolysis        |           |           |               |      |
| PFAM                  | Suzuki coupling  | 0-50 μΜ   | 57.8 nM   | 95            | 5    |
|                       | polymerization   |           |           |               |      |
| Hydrazine-            | Stirring         | 0-40 μM   | 0.44 μM   | 65.14         | 6    |
| substituted           |                  |           |           |               |      |
| BODIPY                |                  |           |           |               |      |
| palladium-based       | Stirring         | 0–100µM   | 0.2 μΜ    | 60            | 7    |
| macro-cycles          |                  |           |           |               |      |
| ,5-bis((E)-4-         | Suzuki coupling  | 40-440 μM | 0.47 μΜ   | -             | 8    |
| bromostyryl)-3,4-     | andWittig-Horner |           |           |               |      |
| diphenylthiophen      | reactio          |           |           |               |      |
| supramolecular        | Click Chemsirty  | 0-47.6 μM | 2.52 μΜ   | -             | 9    |
| receptor              |                  |           |           |               |      |
| Phen-SnO <sub>2</sub> | Probe            | 0-300 μM  | 0.011 µM  | 99.92         | This |
| Nanosheets            | Ultrasonication  |           | (11 nm)   |               | Wor  |
|                       |                  |           |           |               | 1    |
|                       |                  |           |           |               | K    |

#### References

- 1 X.Sun, J.He, Y.Meng, L.Zhang, S.Zhang, X.Ma, S.Dey, J.Zhao and Y.Lei, Microwave-assisted ultrafast and facile synthesis of fluorescent carbon nanoparticles from a single precursor: preparation, characterization and their application for the highly selective detection of explosive picric acid. *J. Mater. Chem. A*, 2016, **4**, 4161–4171.
- A.Saravanan, M.Maruthapandi, P.Das, S.Ganguly, S.Margel, J. H. T.Luong and A.Gedanken, Applications of N-doped carbon dots as antimicrobial agents, antibiotic carriers, and selective fluorescent probes for nitro explosives. *ACS Appl. Bio Mater.*, 2020, **3**, 8023–8031.
- S.Chongdar, U.Mondal, T.Chakraborty, P.Banerjee and A.Bhaumik, A Ni-MOF as
   Fluorescent/Electrochemical Dual Probe for Ultrasensitive Detection of Picric
   Acid from Aqueous Media. ACS Appl. Mater. Interfaces, 2023, 15, 14575–14586.
- M. K.Mahto, D.Samanta, M.Shaw, M. A. S.Shaik, R.Basu, I.Mondal,
   A.Bhattacharya and A.Pathak, Blue-Emissive Nitrogen-Doped Carbon Dots for
   Picric Acid Detection: Molecular Fluorescence Quenching Mechanism. ACS
   Appl. Nano Mater., 2023, 6, 8059–8070.
- 5 A. S.Tanwar, S.Hussain, A. H.Malik, M. A.Afroz and P. K.Iyer, Inner filter effect based selective detection of nitroexplosive-picric acid in aqueous solution and solid support using conjugated polymer. *Acs Sensors*, 2016, **1**, 1070–1077.
- 6 J.Gao, X.Chen, S.Chen, H.Meng, Y.Wang, C.Li andL.Feng, The BODIPY-based chemosensor for fluorometric/colorimetric dual channel detection of RDX and PA. Anal. Chem., 2019, 91, 13675–13680.
- 7 S.Kumar, R.Kishan, P.Kumar, S.Pachisia and R.Gupta, Size-Selective Detection of Picric Acid by Fluorescent Palladium Macrocycles. *Inorg. Chem.*, 2018, 57,

1693–1697.

- L. R.Adil, P.Gopikrishna and P.Krishnan Iyer, Receptor-Free Detection of Picric Acid: A New Structural Approach for Designing Aggregation-Induced Emission Probes. ACS Appl. Mater. Interfaces, 2018, 10, 27260–27268.
- 9 V.Bharadwaj, J. E.Park, S. K.Sahoo and H.Choi, Selective Fluorescent Turn-Off Detection of Picric Acid Using a Novel Tripodal Supramolecular Triazole-Trindane Based Receptor. *ChemistrySelect*, 2019, 4, 10895–10901.