Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2023

Supporting Information for

Elemental fingerprint as a potential tool for tracking the fate of real-life model nanoplastics generated from plastic consumer products in environmental systems

Mohammed Baalousha^{1*}, Jingjing Wang¹, Md Mahmudun Nabi¹, Mahbub Alam¹, Mahdi Erfani²,

Julien Gigault³, Florent Blancho⁴, Mélanie Davranche⁴, Phillip Potter⁵, Souhail R. Al-Abed⁵

Affiliations:

¹ Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, SC 29208, United States

² TAKUVIK Laboratory, CNRS/Université Laval, 1045, av. de La Médecine, Québec G1V 0A6, Canada

³ Géosciences Rennes, CNRS/Université de Rennes, 263 av. Général Leclerc, 35000 Rennes, France

⁴ Office of Research and Development, Center for Environmental Solutions and Emergency Response, US

Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, United States

* Corresponding author: mbaalous@mailbox.sc.edu

1. Elemental analysis by SP-ICP-TOF-MS

Table S1. Operating conditions for inductively coupled plasma-time of flight-mass spectrometer analysis

 (TOFWERK icpTOF R) for conventional (dissolved metal concentration) and single particle analysis modes.

Instrument parameter	Total co	Single particle analysis								
Plasma Power	1550 W					1550 W				
Nebulizer Gas Flow	1	1.10-1.14 L/min								
Auxiliary Gas Flow		0.8 L/min								
Cooling Gas Flow		14 L/min								
Injector Diameter	2.5 mm					2.5 mm				
Collision Cell Gas	5 mL/min He with 4.5% H_2					5 mL/min He with 4.5% H ₂				
CCT Bias	-2.00 to -4.00 V					-2.00 to -4.00 V				
Notch	Mass	29	32	36.3	41	Mass	29	32	36.3	41
	Amplitude (V)	1.6	2.0	2.0	1.2	Amplitude (V)	1.6	2.0	2.0	1.2
TOF Repetition Rate	33 kHz					33 kHz				
Detected Mass Range	14-275 m/Z					14-275 m/Z				
(CeO/Ce)	< 4.0%					< 4.0%				
Data Acquisition	Continuous Mode					Continuous Mode				
TOF Time Resolution	0.3 s					<u>30</u> μs				
Integration Time		2 ms								
Acquisition Time	60 s					200-300 s				
Sample Flow Rate	-					0.455 mL/min				
Transport Efficiency	-					6.6% (5-7%)				

Flam and		Mass detection	Size detection limit	Size detection limit	Metal oxide formuale	
Element	Isotope	limit (g)	(nm)	(nm)		
Al	²⁷ Al	8.30 × 10 ⁻¹⁵	180	196	Al ₂ O ₃	
Si	²⁸ Si	2.95 × 10 ⁻¹⁴	289	357	SiO ₂	
Ti	⁴⁸ Ti	5.57 × 10 ⁻¹⁶	62	75	TiO ₂	
V	⁵¹ V	3.77 × 10 ⁻¹⁶	49	73	V ₂ O ₅	
Cr	⁵² Cr	3.35 × 10 ⁻¹⁶	45	56	Cr ₂ O ₃	
Mn	⁵⁵ Mn	2.58 × 10 ⁻¹⁶	41	54	MnO ₂	
Fe	⁵⁶ Fe	3.27 × 10 ⁻¹⁶	43	55	Fe ₂ O ₃	
Со	⁵⁹ Co	2.08 × 10 ⁻¹⁶	35	45	Co ₃ O ₄	
Ni	⁶⁰ Ni	8.55 × 10 ⁻¹⁶	57	68	NiO	
Cu	⁶⁵ Cu	6.80 × 10 ⁻¹⁶	53	64	CuO	
Zn	⁶⁶ Zn	1.53 × 10 ⁻¹⁵	74	87	ZnO	
Zr	⁹⁰ Zr	1.57 × 10 ⁻¹⁶	36	41	ZrO ₂	
Nb	⁹³ Nb	8.25 × 10 ⁻¹⁷	26	36	Nb ₂ O ₅	
Sn	¹²⁰ Sn	1.43 × 10 ⁻¹⁶	33	37	SnO ₂	
Sb	¹²¹ Sb	1.83 × 10 ⁻¹⁶	37	43	Sb ₂ O ₃	
Ва	¹³⁸ Ba	6.85 × 10 ⁻¹⁷	33	29	BaO	
La	¹³⁹ La	4.55 × 10 ⁻¹⁷	24	25	La ₂ O ₃	
Ce	¹⁴⁰ Ce	4.89 × 10 ⁻¹⁷	24	25	CeO ₂	
Pr	¹⁴¹ Pr	3.81 × 10 ⁻¹⁷	22	24	Pr ₆ O ₁₁	
Nd	¹⁴⁴ Nd	1.01 × 10 ⁻¹⁶	30	31	Nd ₂ O ₃	
Sm	¹⁵² Sm	1.17 × 10 ⁻¹⁶	31	31	Sm ₂ O ₃	
Eu	¹⁵³ Eu	5.98 × 10 ⁻¹⁷	28	26	Eu ₂ O ₃	
Gd	¹⁵⁸ Gd	1.32 × 10 ⁻¹⁶	32	34	Gd ₂ O ₃	
Tb	¹⁵⁹ Tb	3.20 × 10 ⁻¹⁷	20	21	Tb ₄ O ₇	
Dy	¹⁶⁴ Dy	9.74 × 10 ⁻¹⁷	28	30	Dy ₂ O ₃	
Но	¹⁶⁵ Ho	2.92 × 10 ⁻¹⁷	18	20	Ho ₂ O ₃	
Er	¹⁶⁶ Er	8.80 × 10 ⁻¹⁷	26	28	Er ₂ O ₃	
Tm	¹⁶⁹ Tm	2.95 × 10 ⁻¹⁷	18	20	Tm ₂ O ₃	
Yb	¹⁷⁴ Yb	8.27 × 10 ⁻¹⁷	29	27	Yb ₂ O ₃	
Lu	¹⁷⁵ Lu	2.67 × 10 ⁻¹⁷	17	18	Lu ₂ O ₃	
Hf	¹⁸⁰ Hf	6.34 × 10 ⁻¹⁷	21	25	HfO ₂	
Та	¹⁸¹ Ta	2.66 × 10 ⁻¹⁷	14	20	Ta ₂ O ₅	
W	¹⁸⁴ W	9.11 × 10 ⁻¹⁷	21	27	WO ₂	
Pb	²⁰⁸ Pb	6.23 × 10 ⁻¹⁷	22	24	PbO	
Th	²³² Th	2.93 × 10 ⁻¹⁷	17	19	ThO ₂	
U	²³⁸ U	2.85 × 10 ⁻¹⁷	14	18	UO ₂	

Table S2. Elements monitored for single particle-inductively coupled plasma-time of flight-mass spectrometer analysis and the corresponding particle mass and size detection limits.

Particle mass detection limit is calculated according to the Poisson distribution = $Mass_{detection\ limit} = 3.29\sqrt{background\ signal} + 2.71$

Size detection limit is calculated as the equivalent spherical diameter from the particle mass detection limit assuming pure metal and metal oxide phases

- 2. 3. Figure S1. Fourier transform-infrared (FT-IR) spectra of the model real life nanoplastics generated from ocean aged plastic fragments (NPO) collected from the North Atlantic garbage patch. For polyethylene, the specific bands PE 1&2 at 675 cm⁻¹ and PE 5 at 2850 cm⁻¹ correspond to the specific perpendicular deformation of the CH2 and the symmetrical vibration of the C-H, respectively; PP1&2 at 996 and 1166cm⁻¹ correspond to the rocking CH3 while the PP 4 at 1376 cm⁻¹ is the symmetrical bending of the CH3 and the PP8 is the asymmetrical stretching of the CH3.

Figure S2. Total Ion Counts (TIC) pyrograms for (a) Nanoplastics 1 and (b) Nanoplastics 4, performed at 600 °C in the optimized conditions described in the material and methods section. For Nanoplastics 1, the alkene compounds are clearly identified without extracting the m/z as described in the main text. For Nanoplastics 4, the TIC pyrogram illustrates a large composition heterogeneity, including natural organic matter, propylene, and trace of polyethylene. It is worth noting that a large signal appears on the Nanoplastics 4 pyrogram and corresponds to the carbon dioxide. The formation of carbon dioxide is a strong indicator of the presence of natural organic matter in the pyrolysis cup, which confirms the largest heterogeneity in the colloidal composition for Nanoplastics 4. Spectra for Nanoplastics 2, and 3 are not presented as they the same as those for Nanoplastics 1.

Figure S3. Pyrolysis GC-MS pyrograms of (a) m/z 55 for the Nanoplastics 1 obtained using a 30m DB5-MS C18 column, (b) zoom in on the dodecadiene/dodecane/dodecane peaks, and (c) m/z 70 of the Nanoplastics 4 with the markers of polypropylene (C9, C12, C15i, and C15s) obtained using a 60m DB5-MS C18 column. Similar results were obtained for Nanoplastics 1, 2 and 3 and are thus spectra for Nanoplastics 2 and Nanoplastics 3 are not presented here. The pyrogram illustrates the elution of pyrolysates (*i.e.,* fragments of macromolecules) formed during the pyrolysis at 600°C.

Figure S4. First stage clustering dendrogram. PPS (S1), PETEB (S2), LDBEB (S3), and PSF (S4) refer to the model real-life nanoplastics generated from new plastic products including polypropylene straw, polyethylene terephthalate bottle, white low density polyethylene bag, and polystyrene foam, respectively. Nanoplastics 1 (S5), 2 (S6), 3 (S7), and 4 (S8) refer to the model real-life nanoplastics generated from environmentally aged ocean plastic fragments. Orangeburg (S9), Varina (S10), and Mecklenburg (S11) refer to the three soil samples.

Figure S5. Mean mass fraction of frequent elements within each cluster. PPS, PETEB, LDBEB, and PSF refer to the model real-life nanoplastics generated from new plastic products including polypropylene straw, polyethylene terephthalate bottle, white low density polyethylene bag, and polystyrene foam, respectively. Nanoplastics 1, 2, 3, and 4 refer to the model real-life nanoplastics generated from environmentally aged ocean plastic fragments. Orangeburg, Varina, and Mecklenburg refer to the three soil samples.