Supporting File

Utilization of Lead based saturated adsorbent for the fabrication of battery like hybrid asymmetric supercapacitor

Sourav Acharya^a, Shrabani De^a, Ayon Ganguly^a, Brijesh K. Mishra^{*,b}, and Ganesh Chandra Nayak,*,a

^aDepartment of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad-826004 Jharkhand, India

^bDepartment of Environmental Science and Engineering, Indian Institute of Technology (ISM), Dhanbad-826004 Jharkhand, India

* E-mail Id of Corresponding authors: [gcnayak@iitism.ac.in,](mailto:gcnayak@iitism.ac.in) brijesh@iitism.ac.in

S1. Synthesis of MnO²

 $MnO₂$ was synthesized using a simple thermal treatment method [1]. In a typical process, $MnCO₃$ (Mn content 42-46 %, SRL India Pvt. Ltd.) was heated in a ceramic crucible at 300 °C for 12 hours in a muffle furnace in air to obtain pristine $MnO₂$. This was used as the positive electrode in supercapacitor fabrication.

S2. Characterization of the samples

Figure S1: (a) Dose optimization, (b) Isotherm study, (c) Adsorption time with variation

in temperature, (d) Fit of adsorption data to second-order kinetics model, and (e) Thermodynamic parameters calculation of the Pb adsorption

Figure S2: (a) FTIR plot of adsorbent before and after adsorption, (b) FESEM image of Pb-SCN/ZIF, (c) TGA of SCN/ZIF composite, and (d) BET analysis of the samples.

Sample	Surface Area $2 -1$ (m g)	Total Pore volume $($ cc g $)$	Avg. Pore radius (nm)
SCN	16.89	0.576	4.9
SCN/ZIF	176.6	0.444	1.395
Pb-SCN/ZIF	100.05	0.379	2.095

Table S1: BET data of the composites.

Table S2: RAMAN data of the composites.

Figure S3: (a) UV-Vis analysis of after heat treatment composites, (b) RAMAN analysis of after heat treatment composites, (c) FESEM image of Carbon@ZIF, and (d) HRTEM image of H@Pb-SCN/ZIF.

S3. Electrochemical study

S3.1. Trasatti method analysis:

The following steps are obeyed for this theoretical analysis. The corresponding areal capacitance of $H(\partial Pb-SCN/ZIF$ was calculated using the following equation:

$$
C = \frac{S}{2. \Delta V \cdot v}
$$
 (Equation S1)

Where, C is the areal capacitance in F cm⁻², ΔV is the voltage window in V, v is the scan rate in V $s⁻¹$ and S is the area enclosed by the corresponding cyclic voltammograms in A V cm⁻². Reciprocal of the calculated areal capacitances (C^{-1}) and the square root of the scan rates $(v^{-1/2})$ should be in linear co-relationship assuming ion diffusion follows a semi-infinite diffusion pattern [2].

 C^{-1} = Constant. $v^{1/2}$ + C_T^{-1} (Equation S2)

Where is C_T the total capacitance, which can be considered as the sum of electron double-layer capacitance and pseudocapacitance and can be calculated from intercept of the Yaxis of C^{-1} and $v^{1/2}$ plot [3]. Again, calculated areal capacitances show linear relationship with the reciprocal of the square root of the scan rates assuming a semi-infinite diffusion pattern [4].

 $C =$ Constant. $v^{-1/2} + C_{EDL}$ (Equation S3)

Here, C_{EDL} is the maximum electron double layer capacitance and it can be calculated from intercept in Y-axis of plot of C and $v^{-1/2}$ [3]. Subtracting the electron double layer capacitance (C_{EDL}) from total capacitance (C_T) gives the maximum pseudocapacitance (C_{PS}) . So the capacitance contribution can be calculated by using the following equation:

$$
C_{EDL} \% = \frac{C_{EDL}}{C_T} \times 100
$$
 (Equation S4)

 C_{PS} % = CT (Equation S5) \mathcal{C}_{PS} $\frac{12}{C_T}$ × 100

Table S3: Csp of H@Pb-SCN/ZIF at different scan rates in 0 to -0.65 V voltage window in 3-elctrode.

Figure S4: (a) CV comparison of the samples in 0 to 0.8 V, (b) CV comparison of the samples in 0 to -0.7 V, (c) GCD comparison of the samples in 0 to 0.8 V, (d) GCD comparison of the samples in 0 to -0.7 V, (e) CV of MnO² compared to H@Pb-SCN/ZIF, and (f) GCD of MnO² compared to H@Pb-SCN/ZIF

$$
\frac{m}{m}_{-} = \frac{C_{sp} - \times \Delta V}{C_{sp} + \times \Delta V_{-}}\tag{S1}
$$

Where, $C_{\text{sp+}}$ and C_{sp} are the specific capacitance of the devices in Wh kg⁻¹ for the material used in cathode and anode, respectively calculated in 3-electrode study, while ΔV_+ and ΔV_- are the voltage window of the material used in cathode and anode, respectively in 3-electrode study.

Potential Window	\mathbb{C}_{sp}	ED	PD
	$(\mathbf{F} \mathbf{g}^{-1})$	$(Wh kg-1)$	$(W \text{ kg}^{-1})$
0.8	27	2.4	800
	47	6.6	1000
1.2	121	24.3	1200
1.4	193	52.7	1400
1.5	225	70.4	1500

Table S4: Csp, ED and PD of supercapacitor at different voltage window.

Table S5: Csp, ED and PD of supercapacitor at different current density.

Current density $(A g^{-1})$	∕sp $(\mathbf{F} \mathbf{g}^{-1})$	ED $(\mathbf{Wh} \ \mathbf{kg}^{-1})$	PD $(W \, kg^{-1})$
0.5	364	113.7	750
	225	70.4	1500
◠	134	41.9	3000
3	68	21.3	4500
4	43	13.3	6000

Figure S5: (a) and (b) EIS analysis of the supercapacitor before and after cyclic stability, and FESEM-EDX analysis of the electrodes (c) Before cyclic stability, and (d) After cyclic stability analysis.

Figure S6: (a) Coated electrodes, (b) Fabricated device, (c) Components of the supercapacitor, and (d) Device as used for electrochemical testing.

Figure S7: (a) Charging setup for glowing green LED, and (b) Charging setup for operating 2 V DC fan.

Table S6: Comparison of the fabricated supercapacitor with recently reported devices.

NB: Device denoted as Positive electrode//Negative Electrode.

Reference:

[1] Y. Liu, P. Zhang, J. Zhan, and L. Liu, Heat treatment of MnCO₃: An easy way to obtain efficient and stable MnO2 for humid O3 decomposition, 463 (2019) 374-385.

[2] S. Ardizzone, G. Fregonara, and S. Trasatti, "Inner" and "outer" active surface of $RuO₂$ electrodes, 35(1) (1990) 263-267.

[3] Y.H. Lee, K.H. Chang, and C.C. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes, 227 (2013) 300-308.

[4] J. Duay, S.A. Sherrill, Z. Gui, E. Gillette, and S.B. Lee, Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties, 7(2) (2013) 1200-1214.

[5] S.A. Ahmad, M.Z.U. Shah, M. Arif, M.S.U. Shah, E. Ullah, A. Shah, M. Sajjad, J. Aftab, and P. Song, Rational design of a novel $MnO₂ - FeSe₂$ nanohybrid with nanowires/cubic architecture as promising supercapattery electrode materials, 936 (2023) 117318.

[6] N. Swain, S. Balasubramaniam, and A. Ramadoss, High energy density supercapattery empowered by efficient binder-free three-dimensional carbon coated $\text{NiCo}_2\text{O}_4/\text{Ni}$ battery and Fe3S4@ NiCo pseudocapacitive electrodes, 58 (2023) 106220.

[7] M. Shaheen, M.Z. Iqbal, M.W. Khan, S. Siddique, S. Aftab, and S.M. Wabaidur, Fuels, Evaluation of a Redox-Active Cu-MOF and Co-MOF as Electrode Materials for Battery– Supercapacitor-Type Hybrid Energy Storage Devices, 37(5) (2023) 4000-4009.

[8] S. Raj, P. Kar, and P. Roy, Facile synthesis of flower-like morphology $Cu_{0.27}Co_{2.73}O_4$ for a high-performance supercapattery with extraordinary cycling stability, 54(87) (2018) 12400-12403.

[9] R. Manikandan, A.D. Savariraj, G. Nagaraju, A. Kale, J. Puigdollers, H. Park, H.S. Kim, J.M. Oh, C.J. Raj, and B.C. Kim, Mixed-phase composites derived from cobalt terephthalate as efficient battery-type electrodes for high-performance supercapattery, 157 (2023) 220-233.

[10] Q. Hu, M. Tang, M. He, N. Jiang, C. Xu, D. Lin, and Q. Zheng, Core-shell $MnO₂/@CoS$ nanosheets with oxygen vacancies for high-performance supercapattery, 446 (2020) 227335.

[11] S.K. Babu, and B. Gunasekaran, Ultrathin α -Ni(OH)₂ nanosheets coated on MOF-derived $Fe₂O₃$ nanorods as a potential electrode for solid-state hybrid supercapattery device, 447 (2023) 142146.

[12] W. Liu, J.L. Cheong, M.F. Ng, and J.Y. Ying, Carbon Nitride Mediated Synthesis of Titanium-Based Electrodes for High-Performance Asymmetric Supercapacitors, (2023) 108489.