# 1 Importance of nano-sized molybdenum composite simply synthesized by a microwave oven in

### 2 sorption enhancement of Au(III) from the aqueous phase

- 3 Chuanhao Yan<sup>a</sup>, Xuefeng Yu<sup>a</sup>, Jinlong Zhang<sup>a</sup>, Jinglei He<sup>a</sup>, Wenyi Jia<sup>a</sup>, Jianlong Wang<sup>b</sup>, Fuqiang Liu<sup>c</sup>,
- 4 Junfeng Liu<sup>a</sup>, Xilong Wang<sup>a, \*</sup>
- 5 a Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking
- 6 University, Beijing 100871, China
- 7 <sup>b</sup> College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- 8 ° State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing
- 9 University, Nanjing 210023, China
- 10
- 11 Corresponding author. Email address: xilong@pku.edu.cn (X. Wang)
- 12

#### 13 Supplementary information

14

## 15 Details for calculating the composition of each component in MoCOM

- 16 Base on the XPS spectra of MoCOM (Fig. 3 a-e), We first identified the main components of MoCOM
- 17 was MoS<sub>2</sub>, MoO<sub>3</sub>, and activated carbon (AC). Considering the relative atomic mass (A<sub>r</sub>) of Mo, S, and

....

18 O, we can list the mathematical equations below:

$$W(Mo) = W(MoS_2) \times \frac{A_r(Mo)}{A_r(Mo) + 2 \times A_r(S)} + W(MoO_3) \times \frac{A_r(Mo)}{A_r(Mo) + 3 \times A_r(O)}$$
(S1)

$$W(S) = W(MoS_2) \times \frac{2 \times A_r(S)}{A_r(Mo) + 2 \times A_r(S)} \#(S2)$$

$$W(0+H) = W(MoO_3) \times \frac{A_r(Mo)}{A_r(Mo) + 3 \times A_r(O)} + W(0+H \text{ in } AC) \#(S3)$$
21

22 
$$W(AC) = W(MoO_3) + W(O + H in AC) + W(C) + W(N)#(S4)$$

where W (w/w, %) represents the mass fraction of a specific component or element as indicated in the parenthese in MoCOM. There are four unknown terms (W(MoS<sub>2</sub>), W(MoO<sub>3</sub>), W(AC), and W(O + H in AC)) and four equations. By solving the above equations, we can calculate the composition of MoS<sub>2</sub>, 26 MoO<sub>3</sub>, and activated carbon in MoCOM, as shown in Fig. 3 f.

## 



32 Table S1. Langmuir, Freundlich, and Temkin model fitting results for sorption isotherms of Au(III) by

| Sorption isotherm models | Parameters –                                 | Nanofiber mats |             |
|--------------------------|----------------------------------------------|----------------|-------------|
|                          |                                              | CS-Th          | CS-MoCOM-Th |
| Langmuir model           | $K_{\rm L} ({\rm mL/mg})$                    | 17.5           | 21.5        |
|                          | $Q_{ m m}~( m mg/g)$                         | 2960           | 4090        |
|                          | $R^2$                                        | 0.979          | 0.987       |
| Freundlich model         | n                                            | 2.63           | 2.55        |
|                          | $K_{\rm F}(({\rm mg/g})/({\rm mg/L})^{1/n})$ | 3320           | 4760        |
|                          | $R^2$                                        | 0.895          | 0.923       |
| Temkin model             | $K_{\rm T}  (10^5  {\rm mL/mg})$             | 0.776          | 1.11        |
|                          | $B_{\mathrm{T}}$                             | 218            | 295         |
|                          | $R^2$                                        | 0.919          | 0.920       |

33 CS-Th and CS-MoCOM-Th.

| Sorption kinetics models  | Parameters -                             | Nanofiber mats |             |
|---------------------------|------------------------------------------|----------------|-------------|
|                           |                                          | CS-Th          | CS-MoCOM-Th |
| Pseudo-first-order model  | $k_1 (10^{-3} \text{ mg/(min \cdot g)})$ | 3.54           | 5.58        |
|                           | $Q_{\rm e}~({ m mg/g})$                  | 1330           | 1340        |
|                           | $R^2$                                    | 0.935          | 0.682       |
| Pseudo-second-order model | $k_2 (10^{-6} \text{g/(min \cdot mg)})$  | 6.16           | 7.57        |
|                           | $Q_{\rm e} ({\rm mg/g})$                 | 2150           | 2920        |
|                           | $R^2$                                    | 0.996          | 0.998       |
| Elovich model             | $\alpha$ (mg/min·g)                      | 149            | 501         |
|                           | $\beta$ (10 <sup>-3</sup> g/mg)          | 3.10           | 2.51        |
|                           | $R^2$                                    | 0.950          | 0.956       |

39 Table S2. Pseudo-first-order, pseudo-second-order, and Elovich model fitting results for sorption
40 kinetics of Au(III) by CS-Th and CS-MoCOM-Th.

41

38





44

Fig. S2. SEM image (a) and EDS mapping (b and c) for CS-MoCOM-Th.



45 46

Fig. S3. The speciation distribution of Au(III) at different pH values.

47