Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Manuscript title: Doped carbon dots affect heavy metal speciation in mining soil: Changes of dissimilated iron reduction processes and microbial communities

Authors: Xinyi Huang, † Xuanming Liu, *, ‡ ShaoBo Liu, *, § Yunguo Liu, † Xiaofei

Tan,[†],¶ Shuai Guo,[‡] Mingyang Dai,[†] Qiang Chen,[†] Gaobing Chen, [†],¶ Chenzhi Feng,[†]

[†] College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University),

Ministry of Education, Changsha 410082, China

‡ Hunan Province Key Laboratory of Plant Functional Genomics and Developmental

Regulation, College of Biology, Hunan University, Changsha 410082, China

§ School of Architecture and Art, Central South University, Changsha 410083, China

¶ Shenzhen Research Institute of Hunan University, Shenzhen 518055, China

* Corresponding authors:

E-mail address: xmL05@hnu.edu.cn (Xuanming Liu)

liushaobo@csu.edu.cn (ShaoBo Liu)

1. The BCR extraction method used in this study

For the acid soluble fraction determination, weighed 1 g of air-dried soil were weighed in a 50 mL centrifuge tube, added 40 mL of 0.11 mol/L CH₃COOH, shaken for 16 h at 180 r/m, centrifuged at 5000 r/min for 10 min, passed the supernatant through a 0.45 µm filter membrane and refrigerated at 4°C for further testing. Added 20 mL deionized water in the residue, shaken for 15 min and centrifuged at 5000 r/min. The residue was retained for subsequent extraction. For the reducible fraction determination, added 40 mL of 0.5 mol/L NH₂OH·HCl, shaken for 16 h at 180 r/min, centrifuged at 5000 r/min for 10 min, passed the supernatant through a 0.45 µm filter membrane and refrigerated at 4°C for further testing. Added 20 mL deionized water in the residue, shaken for 15 min and centrifuged at 5000 r/min. The residue was retained for subsequent extraction. For the oxidizable fraction determination, added 10 mL H₂O₂ and digested for 1 h at room temperature, then digested at 85°C until the volume was less than 3 mL. After cooling, added 10 mL H₂O₂ and digested continued until the volume was 1 mL (do not evaporate). After cooling added 40 mL NH₄OAC, shaken for 16 h at 25°C, centrifuged at 5000 r/min for 10 min, pass the supernatant through a 0.45 µm filter membrane and refrigerated at 4°C for further testing. Added 20 mL deionized water in the residue, shaken for 15 min and centrifuged at 5000 r/min. The residue was retained for subsequent extraction. For the residual fraction determination, weighed 0.100 g of air-dried residue, digested with a mixture of HNO₃-HCl-HF-HClO₄ and the metal content was determined by ICP-MS.

2. The extraction of soil DNA

PCR raw products were gel-purified with a KOD-Plus-Neo DNA Polymerase (TOYOBO, Japan). The PCR amplification of 16S rDNA was performed as follows: initial denaturation at 94 °C for 1 min, followed by 25~35 cycles of denaturing at 94 °C for 20 s, annealing at 54 °C for 30 s and extension at 72 °C for 30 s, single extension at 72 °C for 5 min, and ending at 4 °C. TOYOBO (KOD-401B).

Parameter	Value		
рН	3.67		
Organic matter	1.395 mg/g		
Conductivity	473 µS/cm		
Cation exchange capacity (CEC)	2.9 cmol/kg		
Pb	317.83 mg/kg		
Zn	55.60 mg/kg		
Cu	91.27 mg/kg		

 Table S1 Main properties of the soil used in this study

	Pb		Z	Zn		Cu	
Time	Day 0	Day 60	Day 0	Day 60	Day 0	Day 60	
СК	0.06%	0.05%	0.34%	0.65%	0.46%	0.66%	
0.5% N-CDs		0.02%		0.37%		0.56%	
1.5% N-CDs		0.05%		0.42%		0.43%	
0.5% N,P-CDs		0.04%		0.3%		0.29%	
1.5% N,P-CDs		0.04%		0.23%		0.27%	

 Table S2 Proportion of metal atoms on soil surface under different treatments

Time	Treatment							
Time	СК	0.5% N-CDs	1.5% N-CDs	0.5% N,P-CDs	1.5% N,P-CDs			
Day 0	$2.4 \times 10^5 \pm 1.1 \times 10^5$							
Day60	$1.7 \times 10^4 \pm 2.4 \times 10^3 b$	$1.7 \times 10^4 \pm 5.5 \times 10^3 b$	$2.3 \times 10^5 \pm 6.7 \times 10^4 b$	1.3×10 ⁵ ±1.4×10 ⁵ b	$5.9 \times 10^8 \pm 1.1 \times 10^8 a$			

Table S3 Number of copies per gram of sample under different treatments

Fig. S1 FTIR spectrum of N-CDs and N,P-CDs

photoluminescence spectrum of (c) N-CDs, (d) N,P-CDs

Fig.S3 Soil particles TEM (a) CK (b) N-CDs (c) N,P-CDs (red: Cu; green: Zn; blue: Pb)

Fig. S4 Different treatment groups in soil at the genus level relative abundance of bacterial communities