Electronic Supplementary Material (ESI) for Environmental Science: Nano. This journal is © The Royal Society of Chemistry 2024

Supporting information of:

Quantifying Mechanical Abrasion of AgNP Nanocomposites: Influence of AgNP content on abrasion products and rate of microplastic production

Joana Marie Sipe^a, William Berger^a, Nathan Bossa^a, Melissa Chernick^b, Keana C.K. Scott^c, Alan Kennedy^d, Mark Ballentine^d, Treye Thomas ^e, Christine Ogilvie Hendren^{a,f}, Mark R. Wiesner^{a*}

^aDepartment of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA

^bDepartment of Toxicology, Duke University, Durham, NC, 27708, USA

^oMaterials Measurement Science Division, National Institute of Standards and Technology, 100 Bureau Drive, MS-8372 Gaithersburg, MD 20899, United States

^d US Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Rd. Vicksburg, MS, USA

^eUnited States Consumer Product Safety Commission, 4330 East-West Highway, Bethesda, Maryland 20814, United States

^fDepartment of Geological and Environmental Sciences, Appalachian State University, 287 Rivers St, Boone, NC 28608, USA

* Corresponding authors

Mark R. Wiesner, Email Address: wiesner@duke.edu, Office Location: 120 Hudson Hall,

Durham, NC 27708-0287, Office Phone: (919) 660-5292

Number of pages: 16

Number of tables: 6

Number of figures: 17

Artificial sea water composition:

Cl=19.3, Na+=10.7, SO₄²⁻=2.6, Mg=1.3, K+=0.4, Ca²⁺=0.4 and CO₃²⁻=0.2 g/L

Moderately hard freshwater composition:

96 mg/L NaHCO3 , 60 mg/L CaSO4·2H2O , 60 mg/L MgSO4 , 4 mg/L KCl

Sample	Low Power	Standard	High Power	Standard	p-value
	Slope of	Error of	Slope of	Error of	_
	Regression	Slope	Regression	Slope	
PETG	0.0355	0.014	0.1179	0.1514	1.279e-06
0.5% Ag	0.0433	0.0296	0.1014	0.0615	2.2e-16
2% Ag	0.0341	0.0248	0.0965	0.1468	4.47e-16

Table S1: Standard deviations for abrasion rates

Figure S1: a) shape of an ASTM dogbone and the PETG (b), 2%Ag (c), and (d) 0.5%Ag pucks.

Figure S2: PETG Statistical Tests with Residual Plot

Figure S3: AgNP 0.5% Statistical Tests with Residual Plot

Figure S4: AgNP 2% Statistical Tests with Residual Plot

Figure S5) DSC Results for three PETG Replicates

Figure S6) DSC Results for three 0.5%Ag Replicates

Figure S7) DSC Results for three 2%Ag Replicates

Figure S9: SEM EDS spectrum collected from a PETG particle. Au peaks are from the Au coating used to dissipate charging.

Figure S11: SEM EDS spectrum collected from a 0.5%Ag particle. Au peaks are from the Au coating used to dissipate charging.

Figure S13: SEM EDS spectrum collected from a 2%Ag particle. Au peaks are from the Au coating used to dissipate charging.

Figure S14: Linear relationship between contact angle and AgNP content in PETG

Figure S15: PETG FTIR spectra in triplicate

Figure S16: 0.5%Ag Composite FTIR spectra in triplicate

Figure S17: 2%Ag Conposite FTIR spectra in triplicate

Sanding

1. Using Power Consumption Data at 1-3 J/s from (Loredana et al., 2015)

2. Using Power Consumption ideal point at 300 J/s from (Luo et al. 2014)

Quantity and (units)	For PETG	For Ag0.5%	For Ag2%
Model fit *	y = (0.0355x)*1	$y = (0.0433x) * 1 \pm 0.0296$	$y = (0.0341x) * 1 \pm 0.024$
low power	± 0.0140		
input (W)			
Model fit *	$y = (0.1179x) * 300 \pm 0.13$	$y = (0.1014x) * 300 \pm 0.06$	$y = (0.0965x) * 300 \pm 0.1$
high power			
input (W)			
Abrasion	$0.0355 \pm 0.014 - 35.37$	$0.0433 \pm 0.0296 - 30.42$	$0.0341 \pm 0.0248 - 28.95$
$rate(g/m^2/s)$	$\pm 0.1514 \text{ g/m}^2/\text{s} * 3600 \text{ s}$	$\pm 0.0615 \text{ g/m}^2/\text{s} * 3600 \text{ s}$	\pm 44.07 g/m ² /s *3600 s
time (s)	and surface area of 0.00172	and surface area of 0.00172	and surface area of
surface	m ²	m ²	0.00172 m ²
area (m ²)			
Mass	$0.2198 \pm 0.0867 - 219.0$	$0.2681 \pm 0.1833 - 188.4$	0.2111 ± 0.1536
exposed to	± 0.94	± 0.38	-179.3 ± 0.91
(g/hr)			

Table S2. Calculations of Sanding using Power inputs

Chewing

1. Using molar force for baby jaw as 2.5 N from (Tadesse et al.) 2. Using average baby jaw length as 52.5 mm from (Schipper et al.)

 $\frac{2.5 \ N \ \times \ 0.0525 m}{0.75 \ s \ chew \ time} = 0.175 \ J/s$

Quantity and (units)	For PETG	For Ag0.5%	For Ag2%
Model fit * power	y = (0.0355x)*	$y = (0.0433x) * 0.175 \pm$	$y = (0.0341x) * 0.175 \pm$
input (W)	0.175 ± 0.0140		
Abrasion	$0.0062 \text{ g/m}^2/\text{s}$	$0.0076 \pm 0.0052 \text{ g/m}^{2/s}$	$0.006 \pm 0.0043 \text{ g/m}^{2/s}$
rate($g/m^2/s$) time (s)	$\pm 0.0025*60$ s and	*60 s and surface area of	*60 s and surface area of
surface area (m ²)	surface area of 0.00172	0.00172 m ²	0.00172 m ²
	m ²		
Mass exposed to	0.6411 ± 0.2528	0.7820 ± 0.5346	0.6158 <u>+</u> 0.4479
(mg/min)			

Table S3. Calculations of Chewing using Power inputs

 $P = 3.162 \times 10^{-11} W$ from Sipe et al. 2022

Quantity and (units)	For PETG	For Ag0.5%	For Ag2%
Model fit * power input (W)	$y = (0.0355x)^*$ 3.162 × 10 ⁻¹¹ ± 0.0140	y = (0.0433x) * 3.162	y = (0.0341x) * 3.162x
Abrasion	$1.12251 \times 10^{-13} \pm 0.014$	$1.3691 \times 10^{-12} \pm 9.359$	$1.0782 \times 10^{-12} \pm 7.842$
$rate(g/m^2/s)$ time	$g/m^2/s$ *86400 s and surface	$g/m^2/s$ *86400 s and	g/m ² /s *86400 s and
(s)	area of 0.00172 m ²	surface area of 0.00172	surface area of 0.00172
surface area (m ²)		m ²	m ²
Max mass released	$1.6681 \times 10^{-11} \pm 6.5786$	$2.0347 \times 10^{-10} \pm 1.390$	$1.6024 \times 10^{-10} \pm 1.165$
(g/day)			

Table S4. Calculations of Ocean Waves using Power inputs

Quantity and (units)	For PETG	For Ag0.5%	For Ag2%
Model fit * power input (W)	$y = (0.0132e^{(0.8606 * 2.5)}) \pm 0.0051$	$y = (0.0433x) * 2.5 \pm 0$	$y = (0.0341x) * 2.5 \pm 0$
Abrasion	$0.1135 \pm 0.0051 \text{ g/m}^{2/s}$	$0.1083 \pm 0.074 \text{ g/m}^{2/s}$	0.2325 ± 0.062 g/m ² /s
rate($g/m^2/s$) time (s)	*86400 s and surface	*86400 s and surface	*86400 s and surface
surface area (m ²)	area of 0.00172 m ²	area of 0.00172 m ²	area of 0.00172 m ²
Mass exposed to	17 <u>±</u> 1	16 <u>+</u> 11	13 <u>+</u> 9
(g/day)			

$P \approx 2.5 W$ from Benumof et al.

Table S5. Calculations of Ocean Shoreline using Power inputs

P = 0.034 W from Sipe et al. 2022

Quantity and (units)	For PETG	For Ag0.5%	For Ag2%
Model fit * power	y = (0.0355x)*	$y = (0.0433x) * 0.034 \pm$	$y = (0.093x) * 0.034 \pm$

input (W)	0.0355 ± 0.01405		
Abrasion	$0.0016 \pm 0.0002 \text{ g/m}^2/\text{s}$	$0.0014 \pm 0.0010 \mathrm{g/m^{2/s}}$	$0.0032 \pm 0.0008 g/m^2/s$
rate($g/m^2/s$) time (s)	*86400 s and surface	*86400 s and surface	*86400 s and surface
surface area (m ²)	area of 0.00172 m ²	area of 0.00172 m ²	area of 0.00172 m ²
Mass exposed to	0.24 ± 0.04	0.20 ± 0.14	0.47 ± 0.12
(g/day)			

Table S6. Calculations of Rivers using Power inputs

Power (J/time)	abrasion rate (g/m^2/t)	Power (J/s)	Abrasion Rate (g/s*m^2)
2%1	PETG	17.41426205	2.013482762
2%1	PETG	13.40992113	1.324199849
2%1	PETG	13.06192557	1.017420412
2%1	PETG	4.479858561	0.246588535
2%1	PETG	4.50517657	0.170864497
2%1	PETG	1.758713274	0.070869933
2%1	PETG	2.580478093	0.084461427
2%1	PEIG	1.520750698	0.043686945
2%1	PEIG	1.543182654	0.024270525
2%2	PEIG	14.3155166	1.029070264
2%2	PEIG	14.86853677	1.18/314088
2%2	PEIG	14.94432068	1.1319/7291
270 2	PETG	5.00393143	0.180397033
276 2	PETG	3.09382142	0.0022227005
2%2	PETG	3.22130302	0.092510795
2%2	PETG	1 4742249055	0.032319785
2%2	PETG	1 174174495	0.021066272
2%2	PETG	16 61907720	1.957175144
2%3	PETG	12 24246242	1.557175144
2703	PETG	12.54540542	2 22094122
2%3	PETG	6 432560479	0.469006545
2763	PEIG	0.432300479 E 480168748	0.362121671
2703	PETG	3,463106746	0.112615226
2%3	PETG	2.535771878	0.099033743
2%3	PETG	1 22402214	0.034370525
2703	PETG	1.23452214	0.024270525
0.5%1	PETG	1.418093804	1 422002622
0.5%1	PETG	13.20026892	1.453902023
0.5%1	PETG	14.55420918	1.513520818
0.5%1	PETG	2 402222502	0 112596057
0.5%1	PETG	5.49225/602	0.11336003/
0.5%1	PETG	3.328220441	0.002108816
0.5%1	PETG	2.402953503	0.093198816
0.5%1	PETG	2.26/909239	0.06/95/4/
0.3701	PETG	1.444154307	0.042/16124
0.5%1	PETG	1.2529/3011	0.03883284
0.5%2	PEIG	21./865820/	2.043578213
0.5%2	PEIG	17.13373371	1.922225588
0.5%2	PEIG	14.49246795	1.520305692
0.5% 2	PETG	6.154648548	0.509681027
0.5% 2	PETG	5.167389671	0.355320487
0.5% 2	PETG	2.232673583	0.105819489
0.5% 2	PETG	3.429372616	0.14465233
0.5% 2	PETG	1.577463821	0.033007914
0.5% 2	PETG	1.068267075	0.024270525
0.5% 3	PETG	9.503732083	0.402890717
0.5%3	PETG	21.88199704	2.029986719
0.5% 3	PETG	18.24897693	1.919313125
0.5% 3	PETG	4.814213702	0.133973299
0.5%3	PETG	3.875722278	0.205814053
0.5% 3	PETG	3.060306539	0.113586057
0.5%3	PETG	2.740095638	0.088344711
0.5% 3	PETG	1.299928232	0.033978735
0.5% 3	PETG	1.172322549	0.042716124
1	PETG	17.46174759	0
2	PETG	23.14596374	0
3	PETG	5.432677698	0
4	PETG	6.044521261	0
5	PETG	8.273186445	0
6	PETG	20.75593769	0
A	PETG	10.34137913	0
В	PETG	12.14468368	0
с	PETG	13.83297927	0
D	PETG	8.687478398	0
E	PETG	6.530675901	0
F	PETG	2.806652269	0
G	PETG	5.256358817	0
Н	PETG	4.1204751	0
1	PETG	10.42182065	0
1	PETG	15.3845198	0
к	PETG	5.58693847	0
L	PETG	0.852557555	0
М	PETG	0	0
х	PETG	17.90670506	0
Y	PETG	7.203693702	0
Z	PETG	9.182802639	0
Pure 1	PETG	23.45864717	2.183376438
Pure 1	PETG	23.9008818	3.110510497
Pure 1	PETG	18.35370082	2.525105431
Pure 1	PETG	4.258888005	0.499001996
Pure 1	PETG	3.725527982	0.331049962
Pure 1	PETG	2.36056078	0.114556878
Pure 1	PETG	2.039525893	0.06795747
Pure 1	PETG	0.420959453	0.041745303
Pure 1	PETG	0.767779147	0.024270525
Pure 2	PETG	11.51079548	0.442744306
		21.52703062	1.106860766
		53.20303244	4.870187369
		50.10532239	5.091559523
		27.14300113	1.770977225
		22.65297743	1.106860766
		27.94997826	2.656465838
		40.35029769	5.534303829
		0	0