Extensive HPLC-tandem mass spectrometry characterization of soluble degradation products of biodegradable nanoplastics under environmentally relevant temperature and irradiation conditions

By Thierry Douki, Vérane Bard, Maëva Boulée and Marie Carrière

Electronic Supplementary Information

Figure S1: Positive electrospray ionization fragmentation mass spectra of the [M+NH₄]⁺ pseudo-pseudo molecular ion of compound PLA2, namely the PLA pentamer. The pseudo-molecular ion was at m/z=396. The first product ion was observed at m/z=235, which corresponds to loss of NH3, and two lactic acid monomers. Subsequent fragmentations involve loss of water and CO. A fragment corresponding to the loss of 3 lactic acid units is also observed, which also undergoes loss of water and CO. A final product ion correspond to the loss of 4 lactic acid units.

Figure S2: Positive electrospray ionization fragmentation mass spectra of the [M+Na]⁺ pseudo-pseudo molecular ion of compounds a) PLA2 and b) PLA7, namely the PLA pentamer and decamer.

Table S1: Summary of the precursor ions scan and neutral loss data obtained during analyses of age	d
PLA performed with positive and negative electrospray ionization.	

Compound #	PLA1	PLA2	PLA3	PLA4	PLA5	PLA6	PLA7		
retention time (min)	15.0	17.3	18.5	19.4	19.9	20.3	20.7		
m.w.	306	378	450	522	594	666	738		
Number of PLA units	4	5	6	7	8	9	10		
positive ionization									
[M+Na] ⁺ MS1	329	401	473	545	617	n.d.	n.d.		
precusor of ions	257	257	329	401	473	n.d.	n.d.		
		329	401	473	545				
[M+Na]⁺ with NL72	n.d.	401	473	545	617	689	761		
negative ionization									
[M-H] ⁻ MS1	n.d.	377	449	521	593	665	737		
precusor of ions	n.d.	n.d.	n.d.	449	449 521	449	521		
						521			
						593			
[M-H] ⁻ with NL 72	n.d.	377	449	521	593	665	n.d.		

Figure S3: a) Precursor ion scan analysis of aged PCL with negative electrospray ionization. The targeted ions were those identified by MS2 analyses and are listed on the figure; b) Neutral loss analysis of aged PCL with negative electrospray ionization. The monitored loss was -72. The value of the determined pseudo-molecular ion is shown on top of each peak. The red arrows show the peaks corresponding to methylated PCL oligomers.

Figure S4: Comparison of the HPLC-MS detection of synthetic standards of PCL oligomers (100 ng total) and products detected after 60 h of aging of PCL particles in water. The reported chromatograms corresponded to the pseudo-molecular ions of the oligomers of PCL (m/z 245, 359, 473, 587 and 701 for the dimer, trimer, tetramer, pentamer and hexamer, respectively).

Figure S5: Product ion scan characterization of PET4, the PET pentamer. The pseudo-molecular ion was set at 977. a) Chromatogram representing the total ion current in the 200-1000 mass range; b) fragmentation mass spectra of the product eluting at 11.6 min, the PET pentamer.