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Table S1 The analytical conditions of Phenol, BPA, TC, and SMX. The HPLC was equipped with 

C-18 chromatographic column and a UV detector.

Organics mobile phase 

(v/v)

Flow rate

(mL/min)

Detection wavelength

(nm)

Phenol Methanol/Water = 70/30 1 270

BPA Methanol/Water = 60/40 1 230

TC Methanol/0.1% Methanoic acid

= 25/75
1

355

SMX Acetonitrile/0.2% Methanoic acid 

= 30/70
1

270
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Table S2 BET surface area, pore properties of catalysts.

Samples BET surface area

(m2/g)

Pore volume

(cm3/g)

Pore size

(nm)

N‒C 544.80 0.42 3.06

Fe‒NC 537.75 0.54 4.01

Fe‒SNC‒0.2 509.89 0.53 4.01
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Table S3 The surface elemental composition and content of Fe‒NC and Fe‒SNC‒0.2.

Samples XPS (at.%)

C N O Fe S

Fe‒NC 74.30 15.57 10.00 0.50 0

Fe‒SNC‒0.2 75.56 16.29 7.10 0.54 0.51
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Table S4 The fitting results for the N 1s spectra of Fe‒NC and Fe‒SNC‒0.2. 

Samples XPS (at.%)

Fe‒Nx pyridinic N graphitic/pyrrolic N Oxidized N

Fe‒NC 28.14 51.66 8.55 11.66

Fe‒SNC‒0.2 24.53 49.25 11.55 14.67
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Table S5 Parameters of Xinxiang natural surface water collected from Weihe River.

Water matrices
Parameter

Weihe river Tap water

pH 8.45 7.56

BOD5 (mg/L) 12.83 0.36

COD (mg/L) 22.57 1.28

TDS (mg/L) 694 132

TN (mg/L) 1.02 0.005

TP (mg/L) 0.12 N.D.

N.D.: not detected.
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Table S6 The percentage of each component in XPS spectra before and after reaction.

Samples XPS (at.%)

C N O Fe S

Before reaction 75.56 16.29 7.10 0.54 0.51

After reaction 79.58 7.85 11.83 0.4 0.34
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Table S7 The percentage of each component in S 2p before and after reaction.

Samples XPS (at.%)

Oxidized-S groups C-S-C 

Before reaction 69.61 30.39

After reaction 73.37 26.63
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Table S8 The percentage of each component in N1s before and after reaction.

Samples XPS (at.%)

Fe‒Nx pyridinic N graphitic/pyrrolic N Oxidized N

Before reaction 24.53 49.25 11.55 14.67

After reaction 23.38 48.40 11.20 17.02



10

Table S9 The percentage of each component in Fe 2p before and after reaction.

Samples XPS (at.%)

Fe0 Fe(Ⅱ) Fe(Ⅲ)

Before reaction 19.56 49.39 31.05

After reaction 34.43 39.38 26.19
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Table S10 Comparison of different oxidative degradation techniques of phenol in the last two 

years.

Degradation methods Contaminant
Removal 

efficiency (%)

ηTOC 

(%)

k 

(min-1)
Ref.

Photoelectrochemical Phenol 96 (120 min) / 0.035 1

UV-ZnO Phenol 99 (150 min) / / 2

UV-H2-Rh/WO3 Phenol 100 (180 min) 27.6 (180 min) 0.0018 3

O3-RPB Phenol 100 (10 min) 96.42 (30 min) / 4

UV-H2O2-CoP/Fe2+ Phenol 80 (120 min) / / 5

PMS/Fe-SNC-0.2 Phenol 99 (10 min) 92 (20 min) 0.3569
This 

work

In order to successfully combat pathogenic microorganisms in wastewater and safeguard 

ecosystems and public health, wastewater treatment plants typically employ chlorination and 

ozonation as their last stage 6. However, the reactions of chlorine with organic matters from the 

wastewater result in the formation of disinfection by-products (DBPs), which contribute to the 

overall toxicity of the wastewater and may affect potential reuse. Ozone is a disinfectant that can 

be used instead of chlorine to inactivate pathogens that are resistant to chlorine in drinking water 

and reduce the toxicity of wastewater 7. Wert et al. have shown that ozone was capable of reducing 

DBPs formation potential by at least 20% 8. Ozone-based advanced oxidation processes show 

promise for these pollutants’ removal, but the mineralization via ozonation alone is unsatisfactory 

and not cost-effective.
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Table S11 Comparison of catalysts derived from MOFs for PMS activation.

Catalyst

(loading, g/L)

PMS

(g/L)
Contaminant

C0

(mg/L)

Removal 

efficiency

TOF

(g-1min-1)
Ref.

NPCZIF-8(0.2) 0.5 Phenol 20 100% (50 min) 0.395 9

SNG-0.3(0.2) 2 Phenol 20 100% (90 min) 0.215 10

5%Fe-g-C3N4 (1) 1.5 Phenol 10 100% (20 min) 0.183 11

Fe-N-C-3-800(0.5) 0.4 CIP 20 99% (60 min) / 12

Fe-C@CNS (0.2) 0.24 CIP 20 100% (60 min) 0.609 13

Fe3C@NCNT-700 (0.2) 2 Phenol 20 100% (45 min) 0.485 14

Fe@NC-800 (0.2) 0.3 TC 30 95% (60 min) 0.223 15

Co−Fe/NC@GCS (0.2) 0.2 SMX 30 94% (60 min) 0.505 16

CoFe0.8@NCNT@CA (0.4) 0.4 TC 40 95% (25 min) 0.803 17

Fe@C-4 (0.1) 0.6 TBBPA 100% (60 min) 1.02 18

FeMn@NC-800 (0.2) 1.68 SMZ 10 97% (30 min) 0.22 19

C-FeZIF (1) 13.45 TCAA 10 79% (180 min) / 20

Fe-SNC-0.2(0.4) 0.22 Phenol 20 99% (10 min) 1.784
This 

work

C0: initial concentration of contaminant

The turnover frequency (TOF) was calculated through dividing the reaction rate of 

pollutant degradation by the catalyst concentration. 

TBBPA: tetrabromobisphenol A

SMZ: sulfamethazine

TCAA: trichloroacetic acid
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Table S12 Predicted acute (LC50) and chronic (LD50) toxic levels of phenol and its 

intermediate byproducts using three living organisms: Fish-96 h, Daphnia magna-48 h 

and Green algae-96 h.

Degraded 

byproducts

Fish 96h LC50

(mg/L)

Daphnid 96h LC50

(mg/L)

Green Alge 96h EC50

(mg/L)

P (Phenol) 27.7 9.64 2.4

P1 0.095 0.738 0.047

P2 7.01 136 0.736

P3 3.18 36.9 0.242

P4 55979.81 14869.57 2091.37

P5 7.73 25.3 0.962

P6 14.1 115 6.93

P7 491 257 137

P8 66986.86 28903.88 6919.37

P9 7.73 25.3 0.962

P10 0.15 240 94.6

P11 6.08 3.85 4.49

P12 110901.52 51384.62 16512.96

P13 487836.06 189607.45 29465.46

P14 14920475 5647225.5 786367.19
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Fig. S1 SEM of (a) ZIF-8, (b) N@ZIF-8, (c) S@ZIF-8, and (d) (e) Fe-NC.
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Fig. S2 XRD of ZIF-8, N@ZIF-8 and S@ZIF-8.
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Fig. S3 The relationship between the content of Fe‒Nx and Fe3C and the phenol degradation rate 

constant (k).
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Fig. S4 The corresponding pseudo-first-order kinetic modeling: (a) Iron salt content; (b) PMS 

concentration, and (c) catalyst dosage. (d) Different concentrations of sulfur doping activated PMS 

to degrade phenol (Embedded graph: pseudo-first-order rate constants of phenol degradation). 

Reaction conditions: [PMS] = 0.7 mM, [phenol] = 20 mg/L, [catalyst] = 0.4 g/L, 25 ℃, pH=7.
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Fig. S5 XPS survey spectra of NC and SNC‒0.2 (a). High resolution XPS spectra of 

(b) C 1s, (c) N 1s, (d) O 1s, and (e) S 2p.
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Fig. S6 Effect of anions and natural organic matter on Phenol removal efficiency in Fe-SNC-0.2 

degradation system. (a) Cl-, (b) NO3
-, (c) HCO3

-, and (d) HA. Conditions: [PMS] = 0.7mM, 

[catalyst] = 0.4 g/L, [phenol] = 20 mg/L, [Cl-] = 2, 5, 10 mM, [NO3
-] = 2, 5, 10 mM, [HCO3

-] = 2, 

5, 10 mM, [HA] = 2, 5, 10 mg/L, 25 ℃, pH=7.
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Fig. S7 Removal efficiency of Fe‒SNC‒0.2 system with different scavengers for Phenol 

degradation: (a) MeOH, (b) TBA, and (c) L-histidine; (d) PMS consumption. Experimental 

conditions: [PMS] = 0.7 mM, [phenol] = 20 mg/L, [catalyst] = 0.4 g/L, 25 ℃, pH=7.
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Fig. S8 EPR spectra of DMPO−SO4
•− and DMPO−•OH.
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Fig. S9 The degradation efficiency of phenol after premixing Fe-SNC-0.2 with PMS. Conditions: 

[PMS] = 0.7 mM, [catalyst] = 0.4 g/L, [phenol] = 20 mg/L, 25 ℃, pH=7.
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Fig. S10 Several different adsorption configurations of sulfur doping sites: (a) 

graphene, (b) -C-S-C-, (c) -C-SO2-, (d) -C-SO3-, (e) -C-SO4-.
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