Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Supplementary Material

Water Quality During Extended Stagnation and Flushing in a College Residential Hall

Danielle M. Angert,^a Christian Ley,^a Kyungyeon Ra,^b Yoorae Noh,^b Nadezhda Zyaykina,^{a,b}

Elizabeth Montagnino,^b Ruth Wei,^c Andrew J. Whelton,^{a,b} Caitlin R. Proctor^{a,d*}

^a Division of Ecological and Environmental Engineering, Purdue University, West Lafayette, IN,

USA

^b Lyles School of Civil Engineering, Purdue University, West Lafayette, IN, USA

^c Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

^d Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN,

USA

*Address correspondence to Caitlin R. Proctor, Ag. & Biological Engineering, 225 S. University Street, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN USA 47907. Phone: 765-496-1002. Email: proctoc@purdue.edu

Table S1: Limit of Detection (LOD) and Limit of Quantification (LOQ) for the elemental analysis as measured by ICP-OES.

Element	LOQ	LOD
Aluminum	0.86	0.26
Arsenic	4.95	1.49
Beryllium	0.51	0.15
Cadmium	0.35	0.10
Cobalt	1.13	0.91
Chromium	3.02	0.91
Copper	2.78	0.83
Iron	3.15	0.95
Mercury	1.17	0.35
Manganese	0.52	0.16
Nickel	0.74	0.52
Lead	1.91	0.57
Selenium	3.87	1.16
Zinc	0.75	0.23

Table S2: Total chlorine residual (mg/L as Cl_2). ND = below the limit of detection for the HACH [®]
Pocket Colorimeter, 0.02 mg/L as Cl ₂

Trip #	1	2	3	4**	5** (pre- flush)	5** (post- flush)	6**	7
Location								
1: basement bathroom	0.02	ND	ND	0.06	0.03	0.04	ND	0.03
2: kitchen	ND	ND	ND	ND	0.09	0.46*	ND	0.31*
3: 2 nd floor sink	ND	ND	ND	ND	0.07	0.46*	ND	0.02
4: 2 nd floor sink	ND	ND	ND	ND	0.05	0.04	ND	0.04
5: 2 nd floor sink	ND	ND	ND	ND	0.04	0.33*	ND	0.04
6: 2 nd floor sink	ND	ND	ND	ND	80.0	0.07	ND	0.08
7: shower	ND	ND	ND	ND	0.03	0.03	0.05	0.02
8: shower	0.02	ND	ND	ND	ND	0.03	ND	0.02
9: 3 rd floor bathroom	ND	ND	ND	ND	ND	0.37*	ND	0.65*
10: 3 rd floor bathroom	0.02	ND	ND	ND	0.02	0.12	ND	0.06

*Concentration exceeded the legally undetectable total chlorine limit of 0.2 mg/L

**Plastic vials instead of glass were used with the low-range chlorine kit for trips 4-6

Trip #	Average outdoor temperature(°C) ⁴⁶	Average hot water temperature (°C)	Average cold water temperature (°C)
1	2.22	19.28	19.55
2	12.78	19.33	19.25
3	23.89	29.00	28.68
4	27.78	31.18	30.88
5	18.30	25.42*	25.43*
6	23.33	26.98	26.85
7	22.22	27.0	26.65

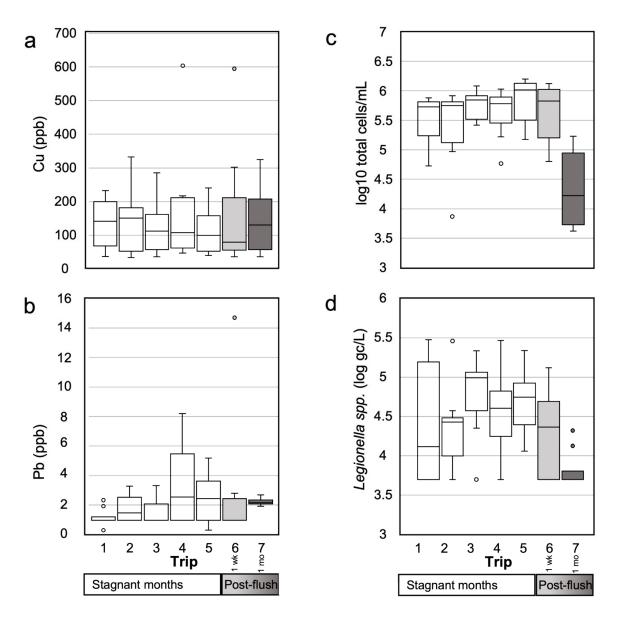
Table S3: Average outdoor and first-draw water temperatures on sampling dates

*Water temperature was measured for the first-draw samples during Trip 5, before full-building

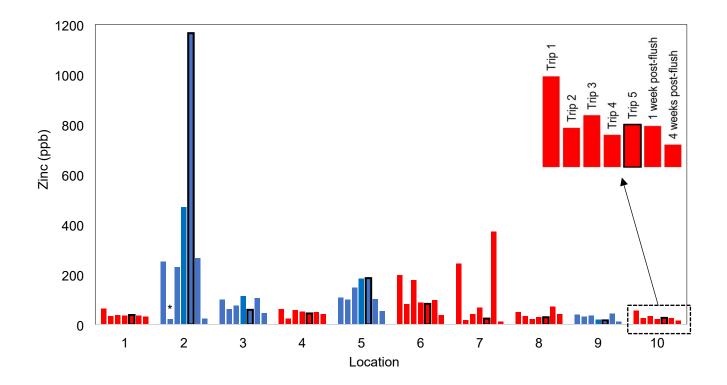
flushing was performed.

Table S4: Ion concentrations before and after flushing. ND = not detected. Ions were additionally analyzed at two locations during 5 of the 7 sampling events (data not shown). One interesting observation within this limited data set was the increase in concentrations of SO_4^{2-} and NO_3^{-} after flushing in both hot and cold water. Several of these ions have implied roles in ecology, but health impacts are minimal, and observed levels were not health-relevant.

Sample	F-	Cŀ	NO ₂ -N	Br	NO ₃ -	PO4 ³⁻	SO4 ²⁻
Hot, stagnant	ND	44.31	ND	0.47	0.68	0.29	49.93
Hot, flushed	ND	54.77	ND	0.36	4.42	0.24	56.31
Cold, stagnant	ND	40.96	ND	0.30	1.51	0.60	48.58
Cold, flushed	ND	61.11	ND	0.33	3.81	0.59	64.54


Anion concentrations (ppm)

Cation concentrations (ppm)


Sample	Li+	Na⁺	NH₃ ⁻ N	K+	Ca ²⁺	<i>Mg</i> ²⁺
Hot, stagnant	ND	38.99	ND	ND	1.00	ND
Hot, flushed	ND	42.42	ND	ND	ND	ND
Cold, stagnant	ND	4.34	ND	ND	22.21	5.64
Cold, flushed	ND	4.91	ND	ND	24.21	6.51

Metal	Concentration (ppb)	Relevant Limit (ppb)		Location	
Aluminum	341.9	50-200	(SMCL)	1 st floor BR hot	
Arsenic	9.5	NA- hot v	water	1 st floor BR hot	
Cadmium	18.1	NA- hot v	water	1 st floor BR hot	
Copper	7,842	NA- hot water		3 rd floor BR hot	
Iron	22,945	300	(SMCL)	3 rd floor BR hot	
Manganese	1,240	1,000	(1-day health advisory)	2 nd floor BR cold	
Nickel	156.5	100	(MCL)	Kitchen cold (basement)	
Lead	150.5	1	(AAP Child level)	Dish sprayer (basement)	
Zinc	2,166	5,000	(SMCL)	Dish sprayer (basement)	

Table S5: Maximum metal concentrations measured during flushing, often associated with collected slugs of discolored water.

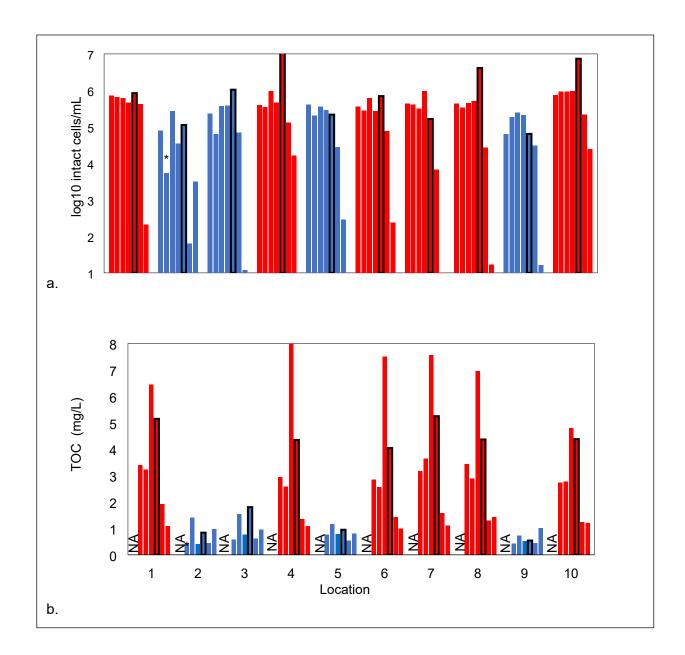

Figure S1. First draw (a) copper concentrations, (b) lead concentrations, (c) Total Cell Counts, and (d) *Legionella* spp. at 10 locations. For each box plot, n=10. Boxes represent Q1/median/Q3 values, with whiskers representing range and outliers as individual points. Each box represents a sampling trip (Trip 1 – April, Trip 2 – May, Trip 3 – June, Trip 4 – July, Trip 5 – August, Trip 6 – 1 week post-flush [light-grey], and Trip 7 - 4 weeks-post flush [dark-grey], in order). For lead, concentrations below the Limit of Detection (LOD=0.57 ppb) are shown as half the LOD. Concentrations below the Limit of Quantification (LOQ=1.91 ppb) are shown as half the LOQ. *A nearby toilet was flushed before sampling. For *Legionella* spp., concentrations below the Limit of Detection (LOD=4 \log_{10} gc/L = 10 gc/mL) are shown as half the LOD (5 gc/mL = 3.7 \log_{10} gc/mL).

Figure S2. Zinc concentrations from first draw samples at 10 locations that drew either hot (red) or cold (blue) water. Each bar represents a sampling trip, and the location numbers are as defined in Figure 1. Bars outlined in black are the final sampling event prior to flushing. *On this trip, a toilet near Location 2 was flushed immediately before sampling, potentially interfering with this result.

Figure S3: Example of discolored water encountered during flushing on upper floors.

Figure S4. First draw (a) intact cell counts and (b) total organic carbon (TOC) detection at 10 locations that drew either hot (red) or cold (blue) water. Each bar represents a sampling month, and the location numbers are as defined in Figure 1. Bars outlined in black are the final sampling event prior to flushing. *On this trip, a toilet near Location 2 was flushed immediately before sampling, potentially interfering with this result.

NA: TOC measurements were not conducted for the first sampling trip due to lab constraints.