Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

1 **Supporting Information:** *Prediction of organic contaminants degradation during*

- 2 *medium pressure UV/NO₃ treatment of groundwater*
- 3 Lidori Edri^a, Nadeem Ibrahim^a, Karl G Linden^b, Dror Avisar^c, Aviv Kaplan^c, Sarah hayoune^a,
- 4 Yaal Lester^{a*}
- 5
- ^a Environmental Technologies, Department of Materials Engineering, Azrieli College of
- 7 Engineering, Jerusalem 9103501, Israel
- ^b Department of Civil, Environmental, and Architectural Engineering, University of Colorado
- 9 Boulder, Boulder, Colorado 80303, United States
- ^c The Water Research Center, Porter School for Environment and Earth Sciences, Faculty of
- 11 Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel; avivkaplan@tauex.tau.ac.il

12

- 13 *Corresponding Authors Email: yaalle@jce.ac.il
- 14
- 15 This PDF file has 6 pages and includes 1 text and 4 figures.

- 17
- 18
- 19
- 20

Figure S1. Relative spectral irradiance of the medium-pressure mercury UV lamp and molar
 absorption coefficient of NO₃⁻

Figure S2. First order degradation rate constant *vs.* NO₃ concentration for the tested compounds.

27 Text S1. Modeling the impact of NO3- on UV degradation of Group II contaminants

28 Compounds belonging to Group II are characterized by high direct photolysis ($k_{\rm UV} > 2x10^{-4}$

29 cm²/mJ) and high reaction rate with •OH ($k_{\bullet OH,C} > 1 \times 10^9$ 1/Ms). To model their degradation

30 kinetics, we used the general equations below:

³¹
$$-\frac{d[C]}{dt} = k'_d[C] + k'_{\bullet OH}[C] \Rightarrow k_{tot} = k'_d + k'_{\bullet OH}$$
 (S1)

32
$$k'_d = \sum_{\lambda} E^P_{avg}(\lambda) \varepsilon(\lambda) \Phi(\lambda) \times 1000$$
 (S2)

$$k'_{OH} = [\bullet OH]_{ss} k_{\bullet OH,C}$$
(S3)

34
$$E_{avg}^{P}(\lambda) = E_{0}^{P} \times \frac{1 - 10^{-\varepsilon_{NO3} \times [NO3] \times z}}{\varepsilon_{NO3} \times [NO3] \times z \times ln(10)}$$
(S4)

Here, k_{tot} and k'_d are the total and photolysis pseudo first-order degradation rate constants (1/s),

36 $k_{\text{OH,C}}$ is the second-order reaction rate constant of the compound with •OH (1/Ms), E^P_0 and E^P_{avg}

are the average photonic fluence rate inside the reactor without and with NO₃ respectively

38 (E/s/cm²), ε molar absorption coefficient (1/Mcm) and Φ is the quantum yield for direct

- 39 photolysis (mol/E).
- 40 Total time-based degradation rate constant (k_{tot}) of contaminants was calculated for two relevant
- 41 values of $k_{\text{OH,C}}$ (8x10⁹ and 1x10¹⁰ 1/Ms), over a wide range of k_{UV} and NO₃⁻ concentrations
- 42 (Figure S3). Steady state •OH concentration was taken from Keen et al.

(lower graph).

Figure S4. Light absorption spectrum of NO_3^- (5 mg/L-N), fulvic acid (2.5 mgC/L) and HCO_3^- (180 mg/L)