Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2023

Sustainable high-efficiency removal of cationic and anionic dye using new super adsorbent biochar: performance, isotherm, kinetic and thermodynamic evaluation

Elias Mosaffa^{a, b,c}, Atanu Banerjee^{a*}, Hossein Ghafuri^c

^aDr. K. C. Patel R & D Centre, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), P.O. Box 388 421 Anand, Gujrat, India.

^bP D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), P.O. Box 388 421 Anand, Gujrat, India.

^cCatalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846, Tehran, I. R., Iran

Fig. S2 Zeta potential result as a function of pH.

Adsorbent	Dye	qe	Ref
Cd zeolitic imidazolate MOF	MG	3324	1
Lignin-inspired porous polymer	MG	1449	2
Zeolitic imidazole framework (ZIF-67)	MG	2430	3
High metals-containing coal gasification fine slag (CGFS)	MG	1787	4
Mesoporous Fe-silica aerogel composite with phenomenal	MG	1592	5
Oxidized mesoporous carbon	MG	1265	6
Fe/Al Di-Metal Nanostructured Composite	CR	411	7
MgAl-LDH nanohydrotalcite-like	CR	769	8
peony seeds shell activated carbon	CR	2003	9
Potassium citrate-derived porous carbon	CR	652	10
activated carbon prepared from Aloe vera leaves shell	CR	1850	11
Ice-Bio 350	MG	10042	TL :
Ice-Bio 700	MG	10596	stud
Ice-Bio 700	CR	7094	

Table S1 Comparative analysis of adsorbent with the reported values for the q_{max} of MG and CR using various adsorbents.

Fig. S3 Reusability of Ice-Bio in MG removal through six continuous cycles.

Fig. S4 Removal efficiency of MG and CR in mixed dye system experiment at various pH.

- S. A. Sadat, A. M. Ghaedi, M. Panahimehr, M. M. Baneshi, A. Vafaei and M. Ansarizadeh, Rapid room-temperature synthesis of cadmium zeolitic imidazolate framework nanoparticles based on 1, 1'-carbonyldiimidazole as ultra-high-efficiency adsorbent for ultrasound-assisted removal of malachite green dye, *Applied Surface Science*, 2019, **467**, 1204-1212.
- 2. C. Jin, Y. Liu, J. Fan, T. Liu, G. Liu, F. Chu and Z. Kong, Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2022, **643**, 128760.
- 3. K. Y. Lin and H. A. Chang, Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water, *Chemosphere*, 2015, **139**, 624-631.
- 4. Y. Dong, F. Guo, R. Shu, K. Dong, Q. Qiao, S. Liu, L. Xu and Y. Bai, Evaluation of the High Metals-Containing Coal Gasification Fine Slag as a High-Performance Adsorbent for Malachite Green Adsorption, *Waste and Biomass Valorization*, 2022, **13**, 4897-4909.
- 5. R. Tang, W. Hong, C. Srinivasakannan, X. Liu, X. Wang and X. Duan, A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green, *Separation and Purification Technology*, 2022, **281**, 119950.
- 6. N. B. Swan and M. A. A. Zaini, Adsorption of malachite green and congo red dyes from water: recent progress and future outlook, *Ecological chemistry and engineering S*, 2019, **26**, 119-132.
- K. L. Muedi, V. Masindi, J. P. Maree, N. Haneklaus and H. G. Brink, Effective Adsorption of Congo Red from Aqueous Solution Using Fe/Al Di-Metal Nanostructured Composite Synthesised from Fe (III) and Al (III) Recovered from Real Acid Mine Drainage, *Nanomaterials*, 2022, **12**, 776.

- 8. M. A. Farghali, A. M. Selim, H. F. Khater, N. Bagato, W. Alharbi, K. H. Alharbi and I. T. Radwan, Optimized adsorption and effective disposal of Congo red dye from wastewater: Hydrothermal fabrication of MgAI-LDH nanohydrotalcite-like materials, *Arabian Journal of Chemistry*, 2022, **15**, 104171.
- 9. P. Liu, T. Song, R. Deng, X. Hou and J. Yi, The efficient removal of congo red and ciprofloxacin by peony seeds shell activated carbon with ultra-high specific surface area, *Environmental Science and Pollution Research*, 2023, **30**, 53177-53190.
- 10. S. Wang, T. Zhang, J. Li, Y. Hua, J. Dou, X. Chen and S. Li, Potassium citrate-derived porous carbon with high CO2 capture and Congo red adsorption performance, *Environmental Sciences Europe*, 2023, **35**, 1-13.
- 11. Y. O. Khaniabadi, M. J. Mohammadi, M. Shegerd, S. Sadeghi, S. Saeedi and H. Basiri, Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from Aloe vera leaves shell, *Environmental Health Engineering and Management Journal*, 2017, **4**, 29-35.