Supporting Information

Efficient elimination of Cr(VI) in aqueous phase using nano zero-valent iron synthesized with Ginkgo biloba extracts: Enhanced mechanism and reduced toxicity

Ting Li¹, Fang Zhu*,¹, Yaqin Gao¹, Marie Rose IRIBAGIZA¹, Guangyao Hu¹, Jian Guan²

- 1. College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, P.R. China 030600
- 2. Yunnan Research Academy of Eco-environmental Sciences, Kunming, Yunnan, P.R. China, 650506

*Corresponding author.E-mail address: zhufang@tyut.edu.cn

College of Environmental Science and Engineering, Taiyuan University of

Technology, Jinzhong,

Shanxi 030600, P. R. China

Equation S1:

$$\eta = \frac{C_0 - C_t}{C_0} \times 100\%$$

Where C_0 and C_t are the initial concentration of Cr(VI) in the solution and the concentration measured at time t (mg/L) and Π represents the removal rate of Cr(VI) Equation S2:

$$\operatorname{Ln}\frac{\operatorname{C}_{\operatorname{t}}}{\operatorname{C}_{\operatorname{0}}} = -\operatorname{k}_{\operatorname{1}}\operatorname{t}$$

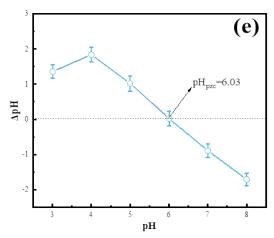
Equation S3:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$

Equation S4:

$$Q_t = k_3 t^{0.5} + C$$

Equation S5:


$$Q_{t} = \left(\frac{1}{\beta}\right) \ln (\alpha \beta) + \left(\frac{1}{\beta}\right) \ln (t)$$

Where C_0 and C_t represent the initial concentration of Cr(VI) and the concentration at time t (mg/L), respectively. q_e (mg/g) and q_t (mg/g) are the removal capacities of Cr(VI) at equilibrium and time t, respectively. k_1 (min⁻¹) reflects the rate constant for the pseudo-first order reaction. k_2 (g/mg·min) represents the rate constant of the pseudo-secondary reaction. k_3 (mg/g·min^{0.5}). C is the rate constants and the corresponding Y-axis intercepts (q_t - $t^{0.5}$) in the intraparticle diffusion model. α (mg/g·min) and β (mg/g) represent the constants of the Elovich model.

TableTable S1 Fitting parameters of the four kinetic models for the removal of Cr(VI) using GBnZVI at different pH conditions

рН	t/min	Pseudo-first- order		Pseudo-second- order		Intra-particle diffusion		Elovich	
		k ₁ (min ⁻¹)	\mathbb{R}^2	k ₂ (g·mg ⁻ ¹ ·min ⁻¹)	\mathbb{R}^2	k ₃ (g·mg-	\mathbb{R}^2	β(mg·g- 1)	R ²
						1·min ^{-1/2})			
3	0-3	0.657	0.994	1.010	0.999	2.754	0.751	4.694	0.926
	5-15					0.057	0.819		
	20-30					0.013	0.865		
	0-3					1.023	0.999		
	5-15	0.204	0.989	0.200	0.889	0.662	0.898	1.094	0.985
	20-30					0.025	0.813		
	0-3					0.502	0.999		
7	5-15	0.214	0.983	0.210	0.945	0.292	0.989	2.327	0.988
	20-30					0.067	0.933		
	0-3					0.321	0.992		
9	5-15	0.199	0.965	0.198	0.901	0.149	0.618	3.375	0.974
	20-30					0.013	0.775		

Figures

 $Fig. \ S1 \ Removal \ of \ Cr(VI) \ by \ GB-nZVI, \ ML-nZVI \ and \ HL-nZVI(a,b); \ Effect \ of \ pH \ (c) \ and \\ temperature \ (d) \ on \ the \ removal \ of \ Cr(VI); \ and \ pHpzc \ of \ GB-nZVI \ (e)$

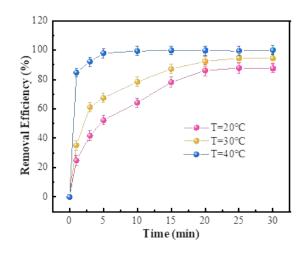


Fig. S2 Effect of temperature on the removal of Cr(VI)