Supplementary material to

Sources and ecological risk of polycyclic aromatic

hydrocarbons in water and air of the Yangtze River

Contents

Number of figures: 6 Number of tables: 10

Abbreviation List

- Table S1 List of 16 PAHs and their physicochemical properties
- Table S2 Concentration of 16 PAHs in water (ng/L)
- Table S3 Concentration ranges of PAHs in water dissolved phase collected from different rivers in China
- Table S4 Concentrations of PAHs in the atmosphere collected from China
- Table S5 Concentration of 16 PAHs in air (ng/m³)
- Table S6 Component matrix of PAHs in water by PCA analysis
- Table S7 Linear regression coeffficient of PAHs in water by PCA-APCS
- Table S8 Component matrix of PAHs in air by PCA analysis
- Table S9 Linear regression coeffficient of PAHs in AIR by PCA-APCS
- Table S10 Acute and chronic Species Sensitivity Distribution parameters and evaluation criteria
- Fig. S1 Detailed sampling locations of water sampling sites in the Yangtze River
- Fig. S2 Detailed sampling end locations of air sampling sites in the Yangtze River
- Fig. S3 The ternary plots of PAH compositions in water (a) and air (b) from the Yangtze River
- Fig. S4 Correlation analysis between the PAHs concentration in air over the Yangtze River and GDP of along cities
- Fig. S5 Back trajectories by NOAA HYSPLIT MODEL
- Fig. S6 Fugacity fractions (ff) of 16 PAHs across the air-water interface during different seasons (ff =0.5 limits indicating equilibrium between the air and water)
- Fig. S6 Liner regression between ff and log octanol–water partition coefficient (Kow)
- Text S1 Extraction and instrument analysis
- Text S2 Air-water exchange fugacity fractions (ff) calculation
- **Additional References**

Abbreviation List

Full Name	Abbreviation
Polycyclic aromatic hydrocarbons	PAHs
Shanghai	SH
Nantong	NT
Changzhou	ChangZ
Zhenjiang	ZhJi
Nanjing	NJ
Wuhu	WHu
Chizhou	ChiZ
Anqing	AQ
Jiujiang	JJ
Huangshi	HS
Ezhou	EZ
Wuhan	WHan
Yueyang	YY
Jingzhou	JZ
Yichang	YC
Chongqing	CQ
Zhejiang	ZJ
Jiangsu	JS
Anhui	AH
Hubei	HB
Hunan	HN
Jiangxi	JX
Principal component analysis	PCA
Absolute principal component score	APCS
Fugacity fractions	ff
Octanol-water partition coefficient	Kow
Dichloromethane	DCM
Gas chromatograph	GC
Mass spectrometer	MS

	Congener		Ring	H ^a (Pa/m ³ /mol)	Instrument detection limit (ng/mL)	Recovery rate (%)
1	Naphthalene	Nap	2	55	0.38	82.1 ± 13
2	Acenaphthylene	Acy	3	16	0.19	117 ± 9.8
3	Acenaphthene	Ace	3	29	0.24	90.2 ± 1.5
4	Fluorene	Fl	3	10	0.20	93.1 ± 7.0
5	Phenanthrene	Phe	3	4.8	0.19	90.7 ± 4.2
6	Anthracene	Ant	3	5.2	0.21	89.6 ± 6.2
7	Fluoranthene	Flu	4	1.7	0.17	113 ± 8.4
8	Pyrene	Pyr	4	2.1	0.15	109.9 ± 16
9	Benzo[a]anthracene	BaA	4	0.45	0.14	69.9 ± 24
10	Chrysene	Chr	4	0.42	0.21	91.1 ± 4.7
11	Benzo[b]fluoranthene	BbF	5	0.18	0.74	108.1 ± 12
12	Benzo[k]fluoranthene	BkF	5	0.17	0.81	97 ± 6.9
13	Benzo[a]pyrene	BaP	5	0.21	1.05	90.8 ± 5.1
14	Indeno[1,2,3-cd]pyrene	InP	5	0.07	1.41	79.3 ± 19
15	Dibenz[a,h]anthracene	DaA	5	0.05	2.05	63.7 ± 9.7
16	Benzo[ghi]perylene	BghiP	6	0.09	3.37	70.4 ± 9.6

Table S1 List of 16 PAHs and their physicochemical properties

^a Henty's law consistent at 25 °C¹

Table S2 Concentration of 16 PAHs in water (ng/L)

	Nap	Acy	Ace	Fl	Phe	Ant	Flu	Pyr	BaA	Chr	BbF	BkF	BaP	InP	DaA	BghiP
Mean	153	5.56	5.44	4.67	18.2	1.25	4.04	5.50	0.15	0.51	0.08	ND	0.45	ND	ND	ND
Std Dev	113	1.91	1.67	2.02	16.7	1.55	3.69	5.56	0.19	0.14	0.05	ND	0.15	0.44	0.11	ND
Max	421	9.77	9.43	9.34	54.5	5.05	11.2	18.1	1.03	0.82	0.21	ND	0.74	2.39	0.39	ND
Min	11.7	2.21	2.88	ND	ND	ND	ND	ND	ND	0.31	ND	ND	0.20	ND	ND	ND
Median	137	5.66	5.57	4.71	15.10	0.48	4.14	5.73	0.12	0.48	0.07	ND	0.45	ND	0.21	ND

ND: Detected concentration below the method detection limit.

Table S3 Concentration ranges of PAHs in water dissolved phase collected from different rivers in China

Site	Range	Number of PAHs	Sampling year	References
Yangtze River	19.9–468	16	2019	This study
Yangtze River	2.4–761.2	16	2017, 2018	2
Rivers in Shanghai ^Y	46.5-460	15 ^a	2015	3
Taihu lake ^Y	45.4-233	16	2010	4
Poyang lake ^Y	5.56-266	16	2012	5
Songhua River	182-397	16	2010	6
Pearl River	92.8-324	16	2016	7
Yellow River	64.8-335	16	2007	3
Huaihe River	79.9-421	16	2013, 2014	8
Weihe River	351-4427	16	2014	9
Daliao River	71.1-4250	16	2013	6
Jinjiang River	42-63	16	2011	9

^Y Tributary of Yangtze River;

a 15 priority PAHs except Nap.

Sites	Ranges (ng/m ³)	Mean (ng/m ³)	Number of PAHs	Sampling year	References
Yangtze River	21.4 - 209	104	16	2019	Present study
North China	6.3 – 2180 ^a	239 ^b	16	2008, 2009	10
	13 - 785 ª	254 ^b	15 ^a	2011	11
Taiyuan		76.5 in spring,	15°	2009, 2010	12
		87.4 in winter ^{c, a}			
		142 °	21 ^d		13
Wuwei		88 °	21 ^d		
Yinchuan		72 °	21 ^d		
Beijing		118 °	21 ^d		
Dezhou		96°	21 ^d		
South China	15.2 - 937 ª	165 ^b	16	2008, 2009	10
Guangzhou	49.6 - 585	313 °	16	2001, 2002	14
Shanghai	33.6 - 55.4	36.0 °	13	2007	15

Table S4 Concentrations of PAHs in the atmosphere collected from China

^b Total PAHs of gaseous phase plus particle phase;

° PAHs in gaseous phase;

^d 21 PAHs including 15 priority PAHs except Nap, and retene (RET), perylene (PER), benzo(e)pyrene (BeP), dibenzo(a,l)pyrene (dBalP), dibenzo(a,e) pyrene (dBaeP), dibenzo(a,h)pyrene (dBahP).

Table S5 Concentration of 16 PAHs in air (ng/m³)

	Nap	Acy	Ace	Fl	Phe	Ant	Flu	Pyr	BaA	Chr	BbF	BkF	BaP	InP	DaA	BghiP
Mean	57.1	2.11	1.92	3.69	13.6	12.1	6.19	5.27	0.65	0.53	0.41	0.16	0.23	0.12	0.03	0.09
Std Dev	42.0	2.74	1.50	2.54	9.13	11.0	4.67	4.28	0.79	0.48	0.51	0.17	0.28	0.13	0.03	0.10
Max	157	10.2	6.08	11.2	34.4	40.2	17.9	14.1	2.73	1.8	1.99	0.67	0.87	0.48	0.10	0.36
Min	4.68	0.12	0.53	0.52	2.30	0.50	1.19	0.83	0.06	0.08	0.04	0.02	0.01	0.02	ND	0.01
Median	59.0	1.32	1.31	2.89	12.1	10.8	5.04	3.50	0.39	0.35	0.22	0.13	0.07	0.08	0.02	0.06

ND: Detected concentration below the method detection limit

	R ²	R1	R2	R3	R4	R5	R6
Nap	0.90**	0.68**	0.47**	-0.24**	2.5**	-0.15*	-0.25**
Acy	0.88**	-0.40**	0.44**	-0.07	-0.04	0.60**	0.41**
Ace	0.81**	0.41**	0.50**	-0.21*	0.56**	0.08	-0.16
Fl	0.92**	0.41**	-0.07	0.21**	0.62**	0.55**	0.15*
Phe	0.93**	0.94**	-0.08	0.18**	0.08	0.04	0.07
Ant	0.95**	0.93**	-0.07	0.20**	0.05	-0.06	0.17**
Flu	0.97**	0.88**	0.20**	0.10*	-0.37**	-0.02	0.10*
Pyr	0.95**	0.88**	0.19**	0.08	-0.35**	-0.02	0.12
BaA	0.83**	-0.30**	0.65**	0.52**	-0.04	-0.11	0.17
Chr	0.78**	-0.28**	0.61**	0.34**	-0.37**	0.25*	-0.09
BbF	0.90**	-0.10	0.87**	-0.03	0.13	-0.27**	-0.19**
BkF	0.76**	-0.42**	0.39**	0.14	0.20	-0.39**	0.48**
BaP	0.68**	-0.23	0.50**	-0.55**	0.15	0.13	-0.19
InP	0.83**	-0.14	-0.04	0.62**	-0.15	0.26**	-0.58**
DaA	0.77**	-0.36**	-0.53**	0.31**	0.48**	-0.16	-0.02
BghiP	0.76**	0.01	0.18	0.79**	0.29**	-0.14	-0.04
Cumulative variance		30.1%	49.1%	61.9%	71.8%	18.8%	85.1%

Table S6 Component matrix of PAHs in water by PCA analysis

 Table S7 Linear regression coeffficient of PAHs in water by PCA-APCS

	PC 1	PC 2	PC 3	PC 4	PC 5	PC 6
Nap	0.684	0.473	-0.235	0.252	-0.149	-0.252
Acy	-0.400	0.437	-0.065	-0.039	0.598	0.406
Ace	0.410	0.500	-0.210	0.564	0.081	-0.156
Fl	0.407	-0.065	0.209	0.621	0.547	0.154
Phe	0.938	-0.075	0.179	0.082	0.037	0.072
Ant	0.931	-0.073	0.197	0.045	-0.064	0.168
Flu	0.880	0.204	0.101	-0.365	-0.016	0.101
Pyr	0.878	0.193	0.075	-0.351	-0.021	0.115
BaA	-0.302	0.652	0.523	-0.037	-0.113	0.167
Chr	-0.284	0.613	0.344	-0.370	0.252	-0.092
BbF	-0.102	0.873	-0.033	0.127	-0.273	-0.190
BkF	-0.419	0.386	0.136	0.196	-0.385	0.477
BaP	-0.226	0.503	-0.547	0.145	0.129	-0.187
InP	-0.137	-0.043	0.621	-0.145	0.260	-0.577
DaA	-0.358	-0.532	0.309	0.484	-0.163	-0.017
BghiP	0.013	0.178	0.793	0.289	-0.138	-0.035

	PC 1	PC 2	PC 3
Nap	0.258	0.456	0.549
Acy	0.412	0.603	0.567
Ace	0.510	0.595	-0.550
Fl	0.708	0.547	-0.389
Phe	0.926	-0.146	-0.081
Ant	0.515	-0.675	0.072
Flu	0.982	-0.086	-0.099
Pyr	0.932	0.099	0.071
BaA	0.973	-0.032	-0.095
Chr	0.982	-0.087	-0.061
BbF	0.962	-0.223	0.061
BkF	0.960	-0.165	0.029
BaP	0.971	0.095	0.039
InP	0.977	-0.089	0.124
DaA	0.960	-0.036	-0.079
BghiP	0.951	-0.067	0.243

Table S8 Component matrix of PAHs in air by PCA analysis

Table S9 Linear regression coeffficient of PAHs in AIR by PCA-APCS

	R ²	R1	R2	R3
Nap	0.576*	0.258	0.457	0.548*
Acy	0.855**	0.411**	0.604**	0.567**
Ace	0.916**	0.509**	0.594**	-0.552**
Fl	0.950**	0.707**	0.547**	-0.389**
Phe	0.885**	0.926**	-0.146	-0.080
Ant	0.644**	0.515*	-0.675**	0.072
Flu	0.976**	0.982**	-0.087	-0.098*
Pyr	0.884**	0.932**	0.099	0.071
BaA	0.958**	0.974**	-0.030	-0.097
Chr	0.976**	0.982**	-0.091	-0.060
BbF	0.978**	0.962**	-0.222**	0.063
BkF	0.951**	0.960**	-0.172*	0.031
BaP	0.953**	0.971**	0.095	0.040
InP	0.978**	0.977**	-0.080	0.127*
DaA	0.923**	0.959**	-0.05	-0.056
BghiP	0.967**	0.951**	-0.059	0.244**

	Acute risk				Chronic risk	c		
			number of	MoA			number of	MoA
Compounds	μ (μg/L)	σ (µg/L)	species	classification	μ (μg/L)	σ (µg/L)	species	classification
Nap	3.5699786	0.6007781	10	1	3.0880456	0.6366096	8	1
Pyr	1.4792086	0.6741506	4	1	0.1583625	0.8494513	3	2
Ace	2.806683	0.9237374	4	2	1.4696098	0.6646106	4	1
F1	3.3710679	0.8147327	7	2	2.462398	1.0993242	5	3
Phe	2.7516372	0.903772	17	2	2.72022	0.8936563	8	2
Ant	1.5520191	0.8080877	7	2	1.3121805	1.2003597	4	3
Flu	2.0700339	0.3509727	8	3	1.69897	0.9911127	15	2
BaP	1.4668676	1.4444968	8	4	1.3914137	1.7698241	10	4
BaA	1.5793093	1.4836184	4	4	0.860585	1.2062285	4	3
BbF	0.4019431	1.5670758	3	4	-0.598056	1.8077062	3	4

Table S10 Acute and chronic Species Sensitivity Distribution parameters and evaluation criteria

Fig. S1 Detailed sampling locations of water sampling sites in the Yangtze River

Fig. S2 Detailed sampling end locations of air sampling sites in the Yangtze River

* Air sampling point A-G-03 and A-G-08 were fixed point samples, which were in the same position as the end of sample A-G-02 and A-G-07, respectively. Therefore, they were not analyzed in this study. All analysis in this study were other 14 samples except A-G-03 and A-G-08.

Fig. S4 Correlation analysis between the PAHs concentration in air over the Yangtze River and GDP of along cities

Fig. S6 Fugacity fractions (ff) of 16 PAHs across the air-water interface during different seasons (ff =0.5 limits indicating equilibrium between the air and water)

Fig. S6 Liner regression between ff and log octanol-water partition coefficient (Kow)

Text S1 Extraction and instrument analysis

Water and air adsorption columns were free-dried firstly to remove the water, and then added internal standard into each sample. Spiked adsorption columns were extracted with 45 mL dichloromethane (DCM) three times by ultrasonic. Mixed extracts about 120 mL for each sample were concentrated to 1 mL under a gentle nitrogen gas flow. The concentrates were purified by the SPE cartridge (CNWBOND; ANPEL Laboratory Technologies, Shanghai, China), and concentrated again to 1 mL for instrument analysis.

Analysis for PAHs was conducted on an Agilent 7890 gas chromatograph (GC) coupled with Agilent 5,975 C mass spectrometer (MS) operated in the negative electron ionization mode. DB-5MS capillary column ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$, Agilent Co., USA) was equipped to separate target compounds. The injection volume was 1.0 µL in the splitless mode, and helium was used as carrier gas at a flow rate of 0.9 mL/min. The temperature program was as follows: initial temperature of 80 °C for 2 min, increased at a rate of 20 °C/min to 180 °C, then held for 5 min, and raised to 300 °C at 8 °C/min followed by a hold of 4 min.

Text S2 Air-water exchange fugacity fractions (ff) calculation

The air-water exchange of each PAHs has been studied in terms of *ff* using the formula reported elsewhere ¹⁶:

$$f_w = C_w \times H$$
$$f_a = C_a \times RT$$

$$ff = \frac{f_w}{f_w + f_a}$$

Where Cw is the PAHs dissolved concentration in water (ng/m³). Ca is the PAHs concentration in air phase (ng/m³). R is the gas constant (8.314 Pa·m3/mol · K). H values were considered for 25 °C, and T (K) is the absolute temperature. The values of H and T are given in Table S1. Theoretically, *ff* range between 0 and 1. ff value > 0.5 suggests a net volatilization from water to air, *ff* < 0.5 indicates a net deposition from water to air. Otherwise, a dynamic equilibrium is producing between air and water interface ¹⁷.

The results of the air-water exchange for PAHs using *ff* were shown in Fig. S5. The *ff* values had a wide range from 0 to 0.999. Nap, Acy and Ace displayed net volatilization from water into air. Flu, BaA, Chr, BbF, BkF, InP and BghiP showed net deposition from air into water. Other 6 PAHs exhibit complex air-water exchange process undergoing volatilization and deposition in

different sampling sites. In addition, there was a potential tendency that air-water exchange process gradually transited from net volatilization to net deposition with the increase of molecular weight. For some PAHs, its air-water exchange directions were different among different site, which may be influenced by atmospheric concentration and other nature parameters, such as wind speed ¹⁸. Additionally, a significant correlation ($R^2 = 0.80$, p < 0.01) was determined between *ff* and log K_{OW} of PAHs (Fig. S6). This suggested that air-water exchanges of PAH depend on their molecular weight, vapor pressure, evaporation enthalpy and hydrophobic properties. Furthermore, this significant correlation also revealed the occurrences of PAHs in Yangtze River come from direct pollution source (LMW PAHs) and atmospheric transportation (HMW PAHs).

Additional References

- J. M. Parnis, D. Mackay and T. Harner, Temperature dependence of Henry's law constants and KOA for simple and heteroatom-substituted PAHs by COSMO-RS, *Atmospheric Environment*, 2015, **110**, 27-35.
- Z. Zhao, X. Gong, L. Zhang, M. Jin, Y. Cai and X. Wang, Riverine transport and water-sediment exchange of polycyclic aromatic hydrocarbons (PAHs) along the middle-lower Yangtze River, China, *J Hazard Mater*, 2021, **403**, 123973.
- S. Liu, X. Liu, M. Liu, B. Yang, L. Cheng, Y. Li and A. Qadeer, Levels, sources and risk assessment of PAHs in multi-phases from urbanized river network system in Shanghai, *Environ Pollut*, 2016, 219, 555-567.
- 4. Z. Zhao, L. Zhang, J. Deng and J. Wu, The potential effects of phytoplankton on the occurrence of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in water from Lake Taihu, China, *Environ Sci Process Impacts*, 2015, **17**, 1150-1156.
- H. Zhi, Z. Zhao and L. Zhang, The fate of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in water from Poyang Lake, the largest freshwater lake in China, *Chemosphere*, 2015, 119, 1134-1140.
- J. Hu, C. Liu, Q. Guo, J. Yang, C. P. Okoli, Y. Lang, Z. Zhao, S. Li, B. Liu and G. Song, Characteristics, source, and potential ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River Basin, Northeast China, *Environ Sci Pollut Res Int*, 2017, 24, 17090-17102.
- Y. Yu, Z. Yu, Z. Wang, B. Lin, L. Li, X. Chen, X. Zhu, M. Xiang and R. Ma, Polycyclic aromatic hydrocarbons (PAHs) in multi-phases from the drinking water source area of the Pearl River Delta (PRD) in South China: Distribution, source apportionment, and risk assessment, *Environ Sci Pollut Res Int*, 2018, 25, 12557-12569.
- M. Liu, J. Feng, P. Hu, L. Tan, X. Zhang and J. Sun, Spatial-temporal distributions, sources of polycyclic aromatic hydrocarbons (PAHs) in surface water and suspended particular matter from the upper reach of Huaihe River, China, *Ecological Engineering*, 2016, 95, 143-151.
- Y. Chen, R. Jia and S. Yang, Distribution and Source of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Dissolved Phase, Suspended Particulate Matter and Sediment from Weihe River in Northwest China, *Int J Environ Res Public Health*, 2015, **12**, 14148-14163.
- W.-L. Ma, L.-Y. Liu, H.-L. Jia, M. Yang and Y.-F. Li, PAHs in Chinese atmosphere Part I: Concentration, source and temperature dependence, *Atmospheric Environment*, 2018, **173**, 330-337.
- Y. Zhang, Y. Lin, J. Cai, Y. Liu, L. Hong, M. Qin, Y. Zhao, J. Ma, X. Wang, T. Zhu, X. Qiu and M. Zheng, Atmospheric PAHs in North China: Spatial distribution and sources, *Sci Total Environ*, 2016, 565, 994-1000.
- Z. Xia, X. Duan, S. Tao, W. Qiu, D. Liu, Y. Wang, S. Wei, B. Wang, Q. Jiang, B. Lu, Y. Song and X. Hu, Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China, *Environ Pollut*, 2013, **173**, 150-156.
- W. Li, C. Wang, H. Wang, J. Chen, H. Shen, G. Shen, Y. Huang, R. Wang, B. Wang, Y. Zhang, H. Chen, Y. Chen, S. Su, N. Lin, J. Tang, Q. Li, X. Wang, J. Liu and S. Tao, Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China, *Environ Pollut*, 2014, **192**, 83-90.

- J. Li, G. Zhang, X. D. Li, S. H. Qi, G. Q. Liu and X. Z. Peng, Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China, *Sci Total Environ*, 2006, 355, 145-155.
- X. Y. Wang, Q. B. Li, Y. M. Luo, Q. Ding, L. M. Xi, J. M. Ma, Y. Li, Y. P. Liu and C. L. Cheng, Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China, *Environ Monit Assess*, 2010, 165, 295-305.
- X. Wu, Y. Wang, Q. Zhang, H. Zhao, Y. Yang, Y. Zhang, Q. Xie and J. Chen, Seasonal variation, air-water exchange, and multivariate source apportionment of polycyclic aromatic hydrocarbons in the coastal area of Dalian, China, *Environmental Pollution*, 2019, 244, 405-413.
- B. Yaman, H. Erkuzu, F. Okan and M. Odabasi, Spatial variations of linear and cyclic volatile methyl siloxanes in a river basin and their air-water exchange, *Atmospheric Pollution Research*, 2020, 11, 2308-2316.
- T. Lin, Z. Guo, Y. Li, L. Nizzetto, C. Ma and Y. Chen, Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River, *Environ Sci Technol*, 2015, 49, 5354-5362.