Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Material

A comparative study on the degradation of iohexol and diatrizoate during UV/persulfate process: kinetics, degradation pathways and disinfection by-products

Chen-Yan Hu^{a,b}, Ling Xu^a, Yi-Li Lin^{c*}, Cong Li^d

- ^b Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
- ^c Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan, ROC
- ^d School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

*Corresponding author: Yi-Li Lin

E-mail: <u>yililin@nkust.edu.tw</u>

Phone: +886-7-6011000#32328

Fax: +886-7-6011061

Address: No. 1, University Rd., Yanchao Dist., Kaohsiung City 824, Taiwan.

This document contains 1 Text, 5 Figures, and 2 Tables.

^a College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, PR China

Text S1 Determination of the second-order rate constants of radicals with iohexol and diatrizoate

The concentration of benzoic acid (BA) was analyzed using an Agilent 1200 infinity series HPLC equipped with an XterraR MS C18 chromatographic column (250 mm \times 2.1 mm, 3.5 μ m, Waters, USA). The mobile phase was methanol and ultra-pure water at a ratio of 50%/50% (v/v) with the flow rate of 1.0 mL/min.

Competition kinetic approaches were applied to determine the second-order rate constants of HO• and SO₄^{-•} with iohexol and diatrizoate, using BA as the competitor (Ma et al., 2021). The concentrations of iohexol, diatrizoate, and BA were both 10 μ M, and the dosages of H₂O₂ and PS were both 200 μ M. 10 mM TBA was added in the solution to eliminate HO• in the UV/PS system. The k_{app} of SO₄^{-•} and HO• with ICM (iohexol or diatrizoate), $k_{SO_4^-•,ICM}$ and $k_{HO•,ICM}$, M⁻¹s⁻¹, are expressed in Eqs. (S1) and (S2):

$$k_{SO_{4}^{-},ICM} = \frac{k_{obs,UV/PS,ICM} - k_{obs,UV,ICM}}{k_{obs,UV/PS,BA}} \times k_{SO_{4}^{-},BA}$$
(S1)

$$k_{\text{HO}\bullet,\text{ICM}} = \frac{k_{\text{obs},\text{UV/H}_2\text{O}_2,\text{ICM}} - k_{\text{obs},\text{UV,ICM}}}{k_{\text{obs},\text{UV/H}_2\text{O}_2,\text{BA}}} \times k_{\text{HO}\bullet,\text{BA}}$$
(S2)

where $k_{obs,UV/PS,ICM}$, $k_{obs,UV,ICM}$, and $k_{obs,UV/H_2O_2,ICM}$ are the pseudo first-order rate constant (s⁻¹) for ICM (iohexol or diatrizoate) in UV/PS, UV, and UV/H_2O_2 processes,respectively; $k_{obs,UV/PS,BA}$ and $k_{obs,UV/H_2O_2,BA}$ are the pseudo first-order rate constant (s⁻¹) for BA in UV/PS and UV/H_2O_2 degradation, respectively. $k_{SO_4^-,BA}$ and $k_{HO^+,BA}$ are the second-order rate constants (M⁻¹s⁻¹) for SO₄^{-•} and HO• with BA, respectively, with values of 1.2×10^9 M⁻¹s⁻¹ and 5.9×10^9 M⁻¹s⁻¹, respectively (Lee et al., 2019).

Figure S1 The schematic diagram of the photochemical reactor.

Figure S2 Determination of the second-order rate constants of $SO_4^{-\bullet}$ ((a), (c)) and HO• ((b), (d)) reacting with iohexol and diatrizoate in UV/PS process. Experimental conditions: UV intensity = 0.93 mW/cm², [iohexol]₀ = [diatrizoate]₀ = [BA]₀ =10 μ M, [PS]₀ = [H₂O₂]₀ = 200 μ M, [phosphate buffer]₀ = 10 mM, Temp. = 25 ± 1 °C, and pH = 7.

Figure S3 I⁻ production of (a) iohexol and (b) diatrizoate in UV alone and UV/PS processes. Experimental conditions: UV intensity = 0.93 mW/cm², [iohexol]₀ = [diatrizoate]₀ = 10 μ M, [PS]₀ = 200 μ M, [phosphate buffer]₀ = 10 mM, Temp. = 25 ± 1 °C, and pH = 7.

Figure S4 Mass spectra of the degradation of iohexol by UV/PS process.

Figure S5 Mass spectra of the degradation of diatrizoate by UV/PS process.

Number	m/z	Proposed	Number	m/z	Proposed
		structure			structure
P1	711		Р8	807	
P2	725		Р9	697	
Р3	519		P10	789	
P4	393		P11	805	
Р5	602		P12	747	
P6	414		P13	527	
P7	835		P14	437	HO + + + + HI = OH

 Table S1 The detected intermediates during the degradation of iohexol by UV/PS process.

Number	m/z	Proposed structure
P1	586	
P2	630	
Р3	628	
Р4	602	
Р5	572	
Р6	573	
P7	486	
P8	504	

 Table S2. The detected intermediates during the degradation of diatrizoate by UV/PS process.

References

- Lee, M.Y., Wang, W.L., Xu, Z.B., Ye, B., Wu, Q.Y., Hu, H.Y., (2019). The application of UV/PS oxidation for removal of a quaternary ammonium compound of dodecyl trimethyl ammonium chloride (DTAC): The kinetics and mechanism. Sci. Total Environ. 655, 1261-1269. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.11.256
- Ma, X.Y., Tang, L.J., Deng, J., Liu, Z.H., Li, X.Y., Wang, P., Li, Q.S., (2021). Removal of saccharin by UV/persulfate process: Degradation kinetics, mechanism and DBPs formation. J. Photochem. Photobiol., A 420, 113482.

https://doi.org/https://doi.org/10.1016/j.jphotochem.2021.113482