Supporting information

Hydrogen Spillover of Pt₅Ru₁ Nanoalloy Improves Ni₃S₂ Highly

Efficient pH-universal Electrocatalytic Hydrogen Evolution

Zuxi Yu, Xianhong Rui, Yan Yu*

Z. Yu, Prof. Y. Yu

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China. E-mail: yanyumse@ustc.edu.cn

Prof. X. Rui

School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China.

Prof. Y. Yu

National Synchrotron Radiation Laboratory, Hefei, Anhui 230026, China.

Experimental Section

Synthesis of Ni₃S₂@NF

 $Ni_3S_2@NF$ was synthesized by one-step hydrothermal method. 16 mM $Na_2S \cdot 9H_2O$ was added to deionized water (30 mL) and stirred vigorously. Then, 4×2 cm² of washed nickel foam was placed into autoclave and heated at 120 °C for 6h. After the reaction, the sample was vacuum dried at 60 °C for 3h.

Synthesis of Ni₃S₂/Pt₅Ru₁@NF

The final Ni₃S₂/Pt₅Ru₁@NF sample was acquired by chemical reduction at room temperature. H₂PtCl₆·6H₂O (0.575 mmol), RuCl₃ (0.575 mmol), and Na₃C₆H₅O₇·2H₂O (0.01 M) were dissolved into deionized water (40 mL) and stirred evenly. Then, the Ni₃S₂@NF and NaBH₄ (0.01 M) were put into it. After reaction for 1 h, the obtained

 $Ni_3S_2/Pt_5Ru_1@NF$ was washed by deionized water and dried at 60 °C for 3 h under vacuum.

Synthesis of Ni₃S₂/Pt@NF

The Ni₃S₂/Pt@NF control sample was acquired by chemical reduction at room temperature. H₂PtCl₆·6H₂O (0.575 mmol), Na₃C₆H₅O₇·2H₂O (0.005 M) were dissolved into deionized water (20 mL) and stirred evenly. Then, the Ni₃S₂@NF and NaBH₄ (0.005 M) were put into it. After reaction for 1 h, the obtained Ni₃S₂/Pt₅Ru₁@NF was washed by deionized water and dried at 60 °C for 3 h under vacuum.

Synthesis of Ni₃S₂/Ru@NF

The Ni₃S₂/Ru@NF control sample was acquired by chemical reduction at room temperature. RuCl₃ (0.575 mmol), Na₃C₆H₅O₇·2H₂O (0.005 M) were dissolved into deionized water (20 mL) and stirred evenly. Then, the Ni₃S₂@NF and NaBH₄ (0.005 M) were put into it. After reaction for 1 h, the obtained Ni₃S₂/Pt₅Ru₁@NF was washed by deionized water and dried at 60 °C for 3 h under vacuum.

Synthesis of Pt/C@NF

Pt/C@NF was synthesis by immobilizing Pt/C onto NF. An immobilization ink solution was firstly prepared by mixing 10 mg Pt/C with 40 μ L Nafion, then dispersed in 1.0 mL of water-ethanol solution (V_{Water} / V_{Ethanol} = 4:1), followed by 30 min sonication. A piece of the treated NF was then immersed into the ink solution for 3 min and dried in air at room temperature.

Material Characterization

The morphologies of Ni₃S₂/Pt₅Ru₁@NF, Ni₃S₂/Pt@NF, Ni₃S₂/Ru@NF, Pt/C@NF and Ni foam were observed employing field-emission scanning electron microscope (ZEISS, Gemini SEM 300) and transmission electron microscope (JEOL, 4000EX). High-resolution transmission electron microscopy (HRTEM) of the Ni₃S₂/Pt₅Ru₁@NF was characterized by transmission electron microscope (JEOL, 4000EX). Raman scattering spectra were recorded by a Renishaw System 2000 spectrometer. The crystalline structures of these samples were characterized using X-ray diffraction (Rigaku, TTR-III) with a Cu K α radiation. The chemical states of the sample on the surface were analyzed by XPS (ESCALAB 250Xi). Proportion of Ni, S, Pt and Ru in Ni₃S₂/Pt₅Ru₁@NF was measured by inductive coupled plasma emission spectrometer (Optima 7300 DV).

Electrochemical Characterization

Electrochemical measurements were achieved by Autolab electrochemical analyzer with a typical three-electrode system comprising of the Ni₃S₂/Pt₅Ru₁@NF sample as the working electrode, graphite rod electrode as the counter electrode and Ag/AgCl as the reference electrode. All potentials mentioned in this work were revised to reversible hydrogen electrode (RHE) by means of Nernst equation. First, cyclic voltammograms (CVs) with different rate of 20 and 100 mV s⁻¹ were applied to activate the working electrode. Then, the linear sweep voltammetry (LSV) curves were recorded at 5 mV s⁻ ¹ with 95% iR-corrections to remove barrier of uncompensated resistance. Electrochemical impedance spectroscopy (EIS) measurement was conducted at the amplitude voltage of 5 mV by using AC impedance technology with range from 0.1 MHz to 100 mHz. To estimate double-layer capacitance (Cdl), CV measurements were achieved by different scan rates ranging from 25 to 150 mV in the potential windows -0.98 to -0.88 V for HER. Long-term stability tests were conducted using chronopotentiometry under continuous current density. Additionally, 1.0 M KOH and 0.1 M HClO₄ solution was used for above electrochemical test. The TOF value is obtained by following Eq. (1):

$$TOF = \frac{J \times A}{N \times F \times n}$$
(1)

where J is the measured current density, A is geometric area of the electrode, N is the number of electrons required for reaction, F is Faraday constant and n is the number of active sites. The electrochemical surface area (ECSA) of $Ni_3S_2/Pt_5Ru_1@NF$ and control samples were estimated from their C_{dl} value. And the detailed ECSA is acquired by

ECSA = C_{dl}/C_s , where C_s is the specific capacitance of the sample, which is usually between 20 and 60 μ F cm⁻² and here we take the average value of 40 μ F cm⁻² for calculation.

Computational Methods

All DFT calculations were accomplished by using Vienna Ab Initio Simulation Package (VASP), adopting the projector augmented wave (PAW) method.^[1] The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) version was utilized to represent the exchange and correlation energies.^[2] A cut-off kinetic energy of 520 eV was selected for plane-wave basis functions and the $3 \times 3 \times 1$ Monkhorst–Pack grids were applied to all DFT optimizations.^[3] The adjacent slabs were separated by a vacuum layer of 15 Å, which is sufficiently large to exclude the influence of models in vertical direction. In overall HER pathway, protons would be produced on the surface of electrocatalysts and the free energy of protons (ΔG_H) is the key indicator to evaluate HER catalytic activity and is achieved by following Eq. (2):

$$\Delta G_{\rm H} = \Delta E_{\rm H} + \Delta E_{\rm ZPE} - T \Delta S_{\rm H} \tag{2}$$

where ΔE_{H} , ΔE_{ZPE} and $T\Delta S_{H}$ are described the binding energy, zero-point energy change and entropy difference of hydrogen adsorption, respectively. And ΔEH is calculated by following Eq. (3):

$$\Delta E_{\rm H} = E_{\rm surf+H} - E_{\rm surf} - 1/2E_{\rm H2} \tag{3}$$

where the E_{surf+H} is the total energy of absorbed system, the E_{surf} and E_{H2} are the energies of bare surface and gas phase species, respectively.

Figure S1. SEM images of $Ni_3S_2/Pt_5Ru_1@NF$: (a) low magnification, and (b) high magnification.

Figure S2. SEM photos of control samples. (a) Ni Foam, (b) $Ni_3S_2@NF$.

Figure S3. Line scan for the $Ni_3S_2/Pt_5Ru_1@NF$.

Figure S4. XPS spectra of (a) Ni 2p, (b) S 2p in $Ni_3S_2@NF$.

Figure S5. Polarization curves of $Ni_3S_2/Pt_5Ru_1@NF$ and control samples based on ECSA-normalization toward HER in (a) 0.1 M HClO₄, (b) 1.0 M KOH.

Figure S6. Raman spectra of Ni₃S₂/Pt₅Ru₁@NF and control samples. (a) Pristine states, (b) 1.0 M KOH and Ni₃S₂/Pt₅Ru₁@NF in 1.0 M KOH, and (c) Ni₃S₂/Pt₅Ru₁@NF with (up)/without 1.0 M KOH.

Figure S7. Calculated models of (a) Ni_3S_2/Pt_5Ru_1 , and (b) Ni_3S_2/Pt_6 .

Figure S8. Calculated work function (ϕ) of (a) Ni₃S₂, (b) Pt, and (c) Pt₅Ru₁.

Catalyst	Pt loading	Ru loading	Molar ratio of P	
	[wt. %]	[wt. %]	: Ru	
Ni ₃ S ₂ /Pt ₅ Ru ₁ @NF	1.52	0.30	5.07	
Ni ₃ S ₂ /Pt@NF	1.85	/	/	
Ni ₃ S ₂ /Ru@NF	/	1.78	/	

Table S1. ICP-MS analysis of series of Ni₃S₂/Pt₅Ru₁@NF catalysts.

Table S2. The fitted parameters of the EIS data of $Ni_3S_2/Pt_5Ru_1@NF$, Pt/C, $Ni_3S_2/Pt@NF$, $Ni_3S_2/Ru@NF$ and Ni foam for HER in 1.0 M KOH.

Parameter	Ni ₃ S ₂ /Pt ₅ Ru ₁ @NF	Pt/C (Pt=20 %)	Ni ₃ S ₂ /Pt@ NF	Ni ₃ S ₂ /Ru @NF	Ni Foam
R _s	0.69683	0.72489	0.70316	0.70271	0.67703
T-T	0.31780	0.00149	0.30957	0.00830	0.00202
T-P	0.71219	0.81157	0.70055	0.86512	0.78460
R ₁	6.53500	20.39000	8.16600	48.55000	21.53000
C_{ψ}	0.92857	0.00002	0.00428	0.00334	0.00001
R ₂	4.90600	25.39000	11.38000	46.27000	28.19000

Parameter	Ni ₃ S ₂ /Pt ₅ Ru ₁	Pt/C	Ni ₃ S ₂ /Pt	Ni ₃ S ₂ /Ru	Ni Foam
	@NF	(Pt=20 %)	@NF	@NF	
R _s	5.71300	5.43700	5.74000	5.77900	5.54700
T-T	0.02815	0.00129	0.03998	0.00656	0.00039
T-P	0.52085	0.69569	0.60584	0.83801	0.85548
R ₁	0.69609	3.84400	0.52661	2.49700	3.67700
C_{ψ}	0.00347	0.51852	0.00139	0.00271	0.00007
R ₂	5.73700	7.17800	5.93600	3.43900	13.94000

Table S3. The fitted parameters of the EIS data of $Ni_3S_2/Pt_5Ru_1@NF$, Pt/C, $Ni_3S_2/Pt@NF$, $Ni_3S_2/Ru@NF$ and Ni foam for HER in 0.1 M HClO₄.

Table S4. Comparison of electrochemical performance of $Ni_3S_2/Pt_5Ru_1@NF$ catalyst with other reported nickel-based chalcogenides catalysts.

Catalysts	η@10 mA cm ⁻²	Tafel slope	Electrolyte	Substrate	D C	
Catalysis	mV	mV dec ⁻¹	(KOH)	Substrate	KeI.	
Ni ₃ S ₂ /Pt ₅ Ru ₁ @NF	13	62.4	1.0	NF	This work	
Ni_3S_2	186	89.3	1.0	NF	[4]	
Ni ₃ S ₂ /MnS-O	116	41	1.0	NF	[5]	
CoNi ₂ S ₄ /Ni ₃ S ₂	171	88.6	1.0	NF	[6]	
δ-FeOOH/Ni ₃ S ₂	106	82.6	1.0	NF	[7]	
NiWO ₄ -Ni ₃ S ₂	136	112	1.0	NF	[8]	
Fe-Mo-S/Ni ₃ S ₂	141	123	1.0	NF	[9]	
Co ₃ O ₄ @Mo- Co ₃ S ₄ -Ni ₃ S ₂	116	98	1.0	NF	[10]	
Ni ₃ S ₂ /MnO ₂	102	69	1.0	NF	[11]	
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂	113	85	1.0	NF	[12]	
Ni ₃ S ₂ @NiV-LDH	126	90	1.0	NF	[13]	

References

[1] G. Kresse, J. J. C. m. s. Furthmüller, 1996, 6, 15.

[2] J. P. Perdew, K. Burke, M. J. P. r. l. Ernzerhof, 1996, 77, 3865.

[3] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.

- [4] L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li, F. Pan, J. Mater. Chem. A 7 (2019)
 18003-18011.
- [5] Y. Zhang, J. Fu, H. Zhao, R. Jiang, F. Tian, R. Zhang, *Appl. Catal. B-Environ*. 257
 (2019) 117899.
- [6] W. Dai, K. Ren, Y. A. Zhu, Y. Pan, J. Yu, T. Lu, J. Alloys Compd. 844 (2020) 156252.
- [7] X. Ji, C. Cheng, Z. Zang, L. Li, X. Li, Y. Cheng, X. Yang, X. Yu, Z. Lu, X. Zhang,
 H. Liu, J. Mater. Chem. A 8 (2020) 21199-21207.
- [8] S. Huang, Y. Meng, Y. Cao, F. Yao, Z. He, X. Wang, H. Pan, M. Wu, *Appl. Catal. B-Environ.* 274 (2020) 119120.
- [9] Y. Zhang, H. Guo, X. Li, J. Du, W. Ren, R. Song, Chem. Eng. J. 404 (2020) 126483.
- [10] Q. Wu, A. Dong, C. Yang, L. Ye, L. Zhao, Q. Jiang, *Chem. Eng. J.* 413 (2021) 127482.
- [11] Y. Xiong, L. Xu, C. Jin, Q. Sun, Appl. Catal. B-Environ. 254 (2019) 329-338.
- [12] Y. Yang, H. Yao, Z. Yu, S. M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao,
- G. Sun, H. Li, S. Ma, P. Zapol, M. G. Kanatzidis, J. Am. Chem. Soc. 141 (2019) 10417-10430.
- [13] Q. Liu, J. Huang, Y. Zhao, L. Cao, K. Li, N. Zhang, D. Yang, L. Feng, L. Feng, Nanoscale 11 (2019) 8855-8863.