Electronic Supplementary Information

Single-atomic rhenium-assisted 2H-to-1T phase transformation of MoS₂ nanosheets boosting electrocatalytic hydrogen evolution

Jianmin Yu,^{a,c†} Yongteng Qian,^{d†} Qing Wang,^a Chenliang Su,^c Hyoyoung Lee,^{e,f,*} Lu Shang,^{a,*} Tierui Zhang^{a,b,*}

^{*a*}Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^cInternational Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China

^dDepartment of Physics and Interdisciplinary Course of Physics and Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

^eCenter for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, Republic of Korea

^fDepartment of Chemistry, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

[†]These authors contributed equally to this work.

Experimental section

Reagents and materials

All chemicals used in this work as received without further purification. Ammonium perrhenate (NH₄ReO₄; Sigma-Aldrich, \geq 99.99%), sodium molybdate dehydrate (MoNa₂O₄·2H₂O; Sigma-Aldrich, \geq 99%), thiourea (NH₂SCNH₂; Alfa Aesar, \geq 99%), potassium hydroxide (KOH; Sigma-Aldrich, 85%), sulfuric acid (H₂SO₄; Sigma-Aldrich, \geq 99.99%), ethanol (C₂H₅OH; Sigma-Aldrich, \geq 99.99%), Pt/C (20 wt % Pt on Vulcan XC-72R, Sigma-Aldrich), Toray carbon cloth (CC, Alfa Aesar).

Synthesis of the Re-SA/MoS₂ electrocatalysts

The Re-SA/MoS₂ electrocatalysts were prepared by a simple one-pot hydrothermal method. To optimize the catalytic activity of the samples, we fabricated a series of Re-SA/MoS₂ catalysts by tuning the molar ratios of Re and Mo ions (0.15:1, 0.20:1, and 0.25:1). The typical synthesis procedure of Re-SA/MoS₂ (Re: Mo = 0.20:1) was used as follows: 0.20 mmol NH₄ReO₄, 1 mmol MoNa₂O₄·2H₂O, and 2.5 mmol NH₂SCNH₂ were mixed in 20 mL deionized (DI) water under magnetic stirring for 30 min. Afterward, a piece of carbon cloth (CC) was socked in the mixture and then transferred into a Teflon-lined stainless-steel autoclave at 180 °C for 30 h. Then, the obtained products were cleaned with distilled (DI) water and ethanol successively. The product was dried in a vacuum oven at 60 °C for 10 h. Finally, the sample was calcinated at 300 °C for 2 h under Ar gas flow. The sample loading on CC \approx 2.1 mg cm⁻². The same fabrication process was used to synthesize pure MoS₂ and other Re-SA/MoS₂ catalysts by using different molar ratios of Re and Mo ions.

Materials characterizations

Field emission scanning electron microscopy (FESEM, Hitachi S4800, Japan) was used to measure the morphology of the as-synthesized products. The microstructure and quantitative elemental analyses were tested on a JEOL-2100F microscope (JEOL, Japan) equipped with an energy-dispersive X-ray spectrometer (EDS). Aberrationcorrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images and elemental maps of the Re-SA/MoS₂ catalysts were acquired on an aberration-corrected JEM-ARM-300F (JEOL, Japan) microscope operating at 300 kV. The phase structure of the catalysts was investigated by a Powder X-ray diffraction (XRD, Bruker AXSD8 Advance, Germany). The X-ray photoelectron spectroscopy (XPS, ThermoFisher Scientific, UK) data were collected on a VGESCALABMKII X-ray photoelectron spectrometer equipped with a nonmonochromatized Al-Ka X-ray source, which was used to study the possible elemental composition of the samples and their chemical states within the materials. Re L_3 -edge and Mo K-edge X-ray absorption spectroscopy (XAS) data were recorded in fluorescence mode at Beijing Synchrotron Radiation Facility.

Electrochemical measurements

The electrochemical measurements were performed by the electrochemical workstation (VMP3, Biologic Science Instruments, France; CHI 760e, CH Instrument, China). Saturated calomel and graphite rod electrodes were used as the reference and counter electrodes, respectively. The as-prepared Re-SA/MoS₂ electrocatalysts were utilized as the working electrode. The HER catalytic activity was examined by

measuring polarization curves with linear sweep voltammetry (LSV) at a scan rate of 5 mV s⁻¹ in 1.0 M KOH and 0.5 M H_2SO_4 aqueous solutions, respectively. A potential conversion vs. RHE was calculated as follows:

$$E_{(\text{RHE})} = E_{(\text{Hg}_2\text{Cl}_2/\text{Hg})} + E^{\theta}_{(\text{Hg}_2\text{Cl}_2/\text{Hg})} + 0.059 \times \text{pH}$$
(1)

where $E_{(RHE)}$ is the converted potential vs. RHE, $E_{(Hg_2CI_2/Hg)}$ is the potential experimentally measured against the Hg_2Cl_2/Hg reference electrode and $E^{0}_{(Hg_2CI_2/Hg)}$ is the standard potential of Hg_2Cl_2/Hg at 25 °C (0.241V).

To prepare the Pt/C electrode, the catalyst ink was prepared by ultrasonically dispersing the catalyst (5.0 mg) in a solution containing 1 mL of ethanol-DI water (1:3 vol) and 500 μ L of 5 wt. % Nafion solution (117 solution, Aldrich). Then the ink was dropped onto the CC to yield a mass density equivalent to Re-SA/MoS₂ on CC. The cyclic voltammetry (CV) was performed at different scan rates (from 10 to 200 mV s⁻¹) to assess the electrochemically active surface area of the samples. The performance with *iR* compensation (95%) was obtained automatically from the electrochemical potentiostat. The electrochemical impedance spectroscopy (EIS) was tested at the frequency of 0.1 to 100 kHz to measure the charge transfer resistance. The cycling stability of the catalysts was conducted using a chronopotentiometry method both in acid (under the applied potential of -0.28 V) and alkaline (under the applied potential of -1.05 V) media.

Density functional theory method

We employed the VASP¹⁻² to perform all the density functional theory (DFT) calculations within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE)³ formulation. We chose the projected augmented wave (PAW) potentials⁴ to describe the ionic cores. Take valence electrons into account using a plane wave basis set with a kinetic energy cutoff of 450 eV. Partial occupancies of the Kohn-Sham orbitals were allowed using the Gaussian smearing method and a width of 0.05 eV. The electronic energy was considered self-consistent when the energy change was smaller than 10⁻⁵ eV. A geometry optimization was considered convergent when the force change was smaller than 0.05 eV/Å. The Brillouin zone is sampled with 3 × 3 × 1 Monkhorst mesh.⁵

The adsorption of hydrogen on the surface was calculated as follows:

$$\Delta G_{\mathrm{H}^*} = \mathrm{E} \left(\mathrm{slab} + \mathrm{H}^* \right) - \mathrm{E} \left(\mathrm{slab} \right) - 1/2\mathrm{E} \left(\mathrm{H}_2 \right) + \Delta \mathrm{E} \left(\mathrm{ZPE} \right) - \mathrm{T}\Delta \mathrm{S} \tag{2}$$

Where E (slab + H*) is the total energy for the adsorption H, E (slab) is the energy of the pure surface, and E (H₂) is the energy of H₂ in the gas phase. Δ E (ZPE) is the zero-point energy change, and Δ S is the entropy change.

A constant of 0.24 eV corrected the Gibbs free energy calculation at 298 K as:

$$\Delta G_{H^*} = E (slab + H^*) - E (slab)1/2E (H_2) + 0.24$$
(3)

Fig. S1 Enlarged XRD patterns of the (002) peak of the fabricated samples.

Fig. S2 SEM images of (a,b) MoS₂, and (c,d) Re-SA/MoS₂.

Fig. S3 (a,b) TEM image of the pure MoS_2 catalyst. (c) TEM image of Re-SA/MoS₂ catalyst. (d) HRTEM image of the pure MoS_2 catalyst. (e) EDS spectrum and the corresponding element contents of Re-SA/MoS₂.

Fig. S4 (a,b) Full XPS spectra of the pure MoS₂ and Re-SA/MoS₂ catalysts.

Fig. S5 (a) High-resolution Mo 3d core-level XPS spectra of the pure MoS_2 and Re-SA/MoS₂ catalysts. (b) High-resolution S 2p core-level XPS spectra of the pure MoS_2 and Re-SA/MoS₂ catalysts.

Fig. S6 (a) XANES spectra of Mo *K*-edge of the MoS₂ and Re-SA/MoS₂ catalysts. (b) EXAFS spectra of Fourier-transformed Mo *K*-edge of the MoS₂ and Re-SA/MoS₂ catalysts. (c) Mo *K*-edge EXAFS fitting results for Re-SA/MoS₂ in *R* space. (d) Mo *K*-edge EXAFS fitting results for Re-SA/MoS₂ in *k* space. (e,f) Wavelet transformation for Mo *K*-edge of MoS₂ and Re-SA/MoS₂ in *R* space.

Fig. S7 HER performances of the Re-SA/MoS₂ electrocatalysts and control samples in H₂-saturated 1.0 M KOH: (a) LSV curves, (b) Overpotentials (left y-axis) at current densities of -10 and -100 mA cm⁻², and (c) Tafel plots (right y-axis). (d) EIS spectra of the fabricated catalysts in 1.0 M KOH.

Fig. S8 HER performances of the Re-SA/MoS₂ electrocatalysts and control samples in H₂-saturated 0.5 M H₂SO₄: (a) LSV curves, (b) Overpotentials (left y-axis) at current densities of -10 and -100 mA cm⁻². (c) EIS spectra and (d) Tafel plots of the fabricated catalysts in 0.5 M H₂SO₄.

Fig. S9 Cyclic voltammograms of (a) MoS_2 and (b) Re-SA/MoS_2 at different rates ranging from 20-200 mV s⁻¹ in the potential region from 0.24-0.44 V vs RHE. (c,d) Plots of capacitive current density at 0.29V versus scan rate, the corresponding slope can be used for determining the electrochemically accessible surface area of MoS_2 and Re-SA/MoS₂.

Fig. S10 (a) TEM image, (b) HRTEM image, and (c,d) EDS element mapping images and their corresponding contents of the Re-SA/MoS₂ catalysts after a long-term test for HER in 1.0 M KOH.

Fig. S11 (a) TEM image, (b) HRTEM image, and (c,d) EDS element mapping images and their corresponding contents of the Re-SA/MoS₂ catalysts after a long-term test for HER in $0.5 \text{ M} \text{ H}_2\text{SO}_4$.

Fig. S12 XRD patterns (a) and Raman spectra (b) of the Re-SA/MoS₂ catalysts after a long-term test for HER in 1.0 M KOH and 0.5 M H₂SO₄.

Fig. S13 XPS spectra of (a,b) Mo 3d, (c,d) S 2p and (e,f) Re 4f of the Re-SA/MoS₂ catalysts after a long-term test for HER in 1.0 M KOH and 0.5 M H_2SO_4 .

Fig. S14 (a) Constructed DFT model (side and top view) of 2H-MoS₂ and 1T-MoS₂.
(b) Constructed DFT model (side and top view) of Re_{ads}-SA/MoS₂ and Re_{sub}-SA/MoS₂.

Fig. S15 Constructed DFT analysis for HER in adsorption of H_2O^* , OH^*+H^* , and H^* of t2H-MoS₂, 1T-MoS₂, Re_{ads}-SA/MoS₂ and Re_{sub}-SA/MoS₂.

	Path	Ν	R (Å)	$\sigma^2 (\times 10^{-3} \text{ Å}^2)$	⊿ <i>E</i> 0 (eV)	<i>R</i> , %
ReS ₂ ^[a]	Re-S	4.1±0.2	2.38 ± 0.01	5±1	8.3±0.6	0.50
	Re-Re	2.0±0.1	2.79±0.01	4±1		
Re foil ^[b]	Re-Re	12.0	2.75	3±0.2	8.4±0.5	0.50
Re-SA/MoS ₂ ^[c]	Re-S	4.9±0.2	2.37±0.01	3±0.1	6.4±0.9	2.00

Table S1 The fitting results of Re L_3 -edge EXAFS spectra at R space for Re-SA/MoS₂ and reference samples.

Note: N is the coordination number, R is the bond length, and σ^2 is the Debye-Waller factor. [a]: k range: 3-14 (Å⁻¹); R range: 1-3.0 Å; [b]: k range: 3-14 (Å⁻¹); R range: 1-3.1 Å; [c]: k range: 3-12.9 (Å⁻¹); R range: 1.0-2.3 Å; S₀² = 0.98, S₀² is determined from ReS₂. The bold numbers were set as fixed coordination numbers.

Table S2 The fitting result of Mo K-edge EXAFS spectra at R space for Re-SA/MoS₂ and reference sample.

Sample	Path	Ν	R (Å)	σ ² (×10 ⁻³	⊿ <i>E</i> 0 (eV)	<i>R</i> , %
				Ų)		
$MoS_2^{[a]}$	Mo-S	6.0	$2.40{\pm}0.01$	3±0.1	$1.0{\pm}0.8$	1.58
Re-SA/MoS ₂ ^[b]	Mo-S	5.9±0.2	$2.40{\pm}0.01$	3±0.1	$0.8{\pm}0.7$	0.81

Note: N is the coordination number, R is the bond length, and σ^2 is the Debye-Waller factor. [a]: k range: 3-13.5 (Å⁻¹); R range: 1-2.4 Å; [b]: k range: 3-13.6 (Å⁻¹); R range: 1.0-2.4 Å; S₀² = 0.74, S₀² is determined from MoS₂. The bold numbers were set as fixed coordination numbers.

Electrocatalysts	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	References
Re-SA/MoS ₂	1.0 M KOH	38	This work
Ir/MoS ₂	1.0 M KOH	44	ACS Energy Lett., 2019, 4, 368-374
Pd, Ru-MoS _{2-x} OH _y	1.0 M KOH	48	Nat. Commun., 2020, 11, 1116
Pt-SAs/MoS ₂	1.0 M KOH	65	Nat. Commun., 2021, 12, 3021
Ni ₃ S ₂ @MoS ₂	1.0 M KOH	78.1	Adv. Mater., 2022, 34, 2202195
1T _{0.81} MoS ₂ @Ni ₂ P	1.0 M KOH	95	Nat. Commun., 2021, 12, 5260
MoS ₂ /NiFe-LDH	1.0 M KOH	110	Nano Lett., 2019, 19, 4518- 4526
MoS ₂ -C	1.0 M KOH	155	Adv. Energy Mater., 2019, 9, 1802553
MoS ₂ @Au	1.0 M KOH	176	Nat. Commun., 2019, 10, 1348
1T-MoS ₂	1.0 M KOH	250	Adv. Mater., 2020, 32, 2001889

Table S3 Comparison of the HER activity with reported MoS_2 -based electrocatalystsin alkaline media.

Content	MoS_2	Re-SA/MoS ₂
R _s (solution resistance)	5.32 Ω	4.15 Ω
R _d (diffusion resistance)	0.59 Ω	0.85 Ω
R _{ct} (charge transfer resistance)	2.00 Ω	0.35 Ω

Table S4 The detailed information on the EIS results of the fabricated catalysts in 1.0M KOH.

Electrocatalysts	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	References
Re-SA/MoS ₂	0.5 M H ₂ SO ₄	34	This work
N, Pt-MoS ₂	0.5 M H ₂ SO ₄	38	Energy Environ. Sci., 2022, 15, 1201-1210
Pd, Ru-MoS _{2-x} OH _y	$0.5 \mathrm{~M~H_2SO_4}$	45	Nat. Commun., 2020, 11, 1116
Co, Pd-MoS ₂	$0.5 \text{ M H}_2 \text{SO}_4$	49.3	Adv. Mater., 2020, 32, 2001167
Pt-SAs/MoS ₂	0.5 M H ₂ SO ₄	59	Nat. Commun., 2021, 12, 3021
Rh-MoS ₂	0.5 M H ₂ SO ₄	67	Angew. Chem. Int. Ed., 2020, 59, 10502-10507
Pd-MoS ₂	0.5 M H ₂ SO ₄	78	Nat. Commun., 2018, 9, 2120
Zn-MoS ₂	$0.5 \text{ M H}_2 \text{SO}_4$	130	J. Am. Chem. Soc., 2017, 139, 15479-15485
Pd-1T- ^S MoS ₂	0.5 M H ₂ SO ₄	140	ACS Catal., 2019, 9, 7527- 7534
MoS ₂ @Au	0.5 M H ₂ SO ₄	136	Nat. Commun., 2019, 10, 1348

Table S5 Comparison of the HER activity with reported MoS_2 -based electrocatalystsin acid media.

Content	MoS_2	Re-SA/MoS ₂
R _s (solution resistance)	5.98 Ω	5.20 Ω
R _d (diffusion resistance)	2.86 Ω	0.91 Ω
R _{ct} (charge transfer resistance)	25.13 Ω	5.37 Ω

Table S6 EIS results of the fabricated catalysts in 0.5 M H₂SO₄.

Supplementary references

- 1 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- 2 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 4 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- 5 H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.