Electronic Supplementary Information (ESI)

Manipulating spin state to activate atomically dispersed Fe-N-C catalyst for oxygen reduction

Fan Liu,^a Chengxiang Shi,^a Lun Pan,^a Zhen-Feng Huang,^{*a} Xiangwen Zhang,^a and Ji-Jun Zou^{*a,b}

^aKey Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.

^bQinghai Quality Certification Consulting and Inspection Center Co., Ltd., Qinghai, China.

E-mail: jj_zou@tju.edu.cn (J.-J. Zou) and zfhuang@tju.edu.cn (Z.-F. Huang).

1. Methods

1.1 Materials

FeCl₂·4H₂O (99%), 1,3,5-Benzenetricarboxylic acid (99%), melamine (99%), Nafion solution (~5 wt.%) were obtained from Sigma-Aldrich. Absolute ethanol and isopropanol were obtained from the Chemicals Testing and Calibration Laboratory. All chemicals were used as received. High-purity water (18.25 M Ω ·cm) supplied by a Milli-Q Gradient A10 system was used in all of the experiments.

1.2 Electrochemical measurements

The number of electron transfer (n) during the reaction was mainly calculated by the Koutecky-Levich (K-L) equation:

$$J^{-1} = J_{L}^{-1} + J_{K}^{-1} = B^{-1} \omega^{-1/2} + J_{K}^{-1}$$
(1)

$$B=0.2nFC_0(D_0)^{2/3}v^{-1/6}$$
(2)

Where J and JK represent measured current density and diffusion-limited current density, respectively, n is the number of electron transfer during the ORR, F is Faraday constant (96485 C mol⁻¹), C₀ is the O₂ concentration in the electrolyte (C₀ =1.2×10⁻³ mol L⁻¹), D₀ is the O₂ diffusion coefficient (D=1.9×10⁻⁵), v is the kinetic viscosity of the electrolyte (0.01 cm² s⁻¹ for 0.1 M KOH) and ω indicates the electrode rotation rate.

The number of electron transfer (n) and the yield of H₂O₂ were calculated by the following two equations:

$$n = 4I_d (I_d + I_r N^{-1})^{-1}$$
(3)

$$H_2O_2\% = 200I_r (N I_d + I_r)^{-1}$$
(4)

Where I_d is the disk current, I_r is the ring current, and N (0.37) is the collection coefficient.

The durability tests were conducted by measuring the current vs. time (i-t) chronoamperometric response at potential 0.6 V for 80000s in O₂-saturated electrolyte. The tolerance to CH₃OH test was performed in chronoamperometric at 0.6 V in O₂-saturated 0.1 M KOH solution along with the injection of CH₃OH (3 M) at 1500s. All measured potentials in this work were converted with reference to the standard RHE, according to the Nernst equation of $E_{RHE} = E_{Ag/AgCl} + 0.21 + 0.059 \times pH$.

The turnover frequency (TOF) is estimated by the following Equation:

TOF=JS
$$(4nF)^{-1}$$

(5)

Where, J (mA cm⁻²) and S (0.196 cm⁻²) represent the kinetic current density at 0.85 V and the surface area of glassy carbon disk, respectively, the number 4 means that 4 electrons are involved in reacting with per mole of O_2 , F denotes Faraday's constant (96485.3 C mol⁻¹), while n is the molecular weight of the corresponding atom calculated from the catalyst loading m.

The electrochemically active surface area (ECSA) was evaluated based on double layer capacitance (C_{dl}) in the non-Faradaic potential region. Specifically, the was tested via CV measurements at various scan rates (10, 20, 30, 40, 60, 80, and 100 mV s⁻¹). The Cdl was obtained by plotting (j_a - j_c) at 1.10 V vs. RHE (where j_a and j_c are the anodic and cathodic current densities, respectively) against the scan rates. The slope of the above profiles was twice of C_{dl} . The ECSA was calculated using the following equation:

$$ECSA = C_{dl}C_{s}^{-1}$$
(6)

Where C_s is the specific capacitance of a smooth surfance of materials under specific electrochemical condition. According to previous study, the value of was 0.04 m F cm⁻² in this calculation. Mass activity of the catalyst was estimated using the following equation:

 $I_{mass} = I_{kin} / M_{catalyst}$

Specific activity expressed as the activity per real surface area, can be calculated as

 $I_{spec} = I_{kin} \, / A_{real}$

In this equation, $M_{catalyst}$ denotes the absolute Fe loading (μg_{Fe}), A_{real} denotes the absolute electrochemically active surface area (m²) and I_{kin} denotes the kinetic current (mA), which was calculated using: $I_{kin} = I_{0.8} \times I_{lim}/(I_{lim} - I_{0.8})$. $I_{0.8}$ and I_{kin} denote the geometric current at 0.8 V vs. RHE and the diffusion limited current, respectively.

(7)

(8)

The performance of Zn-air battery was measured in home-made electrochemical cells. The zinc-air battery was composed of a polished zinc foil as anode, 1×1 cm² carbon paper loaded with catalysts as cathode and 6.0 M KOH with 0.2 M zinc acetate mixture aqueous solution served as the electrolyte. The catalyst loading of the 20 wt.% Pt/C or Fe_{SAC}-NC was 1 mg cm⁻².

1.3 DFT calculations

The ORR catalyze on FeN₄ and Fe_{SAC}-NC systems were calculated based on four-electron pathway.

$O_2(g) + * \rightarrow O_2^*$	(9)
$O_2^*+H_2O(l)+e^-\rightarrow OOH^*+OH^-$	(10)
$OOH^*+e^- \rightarrow O^*+OH^-$	(11)
$O^{+}H_2O(l)+e^{-}\rightarrow OH^{+}OH^{-}$	(12)
$OH^*+e^- \rightarrow OH^-+*$	(13)

In this case, * represents the active sites.

The adsorption energy of the *OOH, *O, and *OH intermediates was defined as the difference in energy between the adsorbed complex and the sum of the isolated Fe_{SAC} -NC catalyst and the isolated *OOH, *O, and *OH group.

The free energy (ΔG) is obtained by¹

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{U} + \Delta G_{pH}$$
(14)

where ΔE is the energy difference between the reactants and the products, which can be obtained directly by DFT calculation. ΔZPE and ΔS are the contributions to the free energy from the zero-point vibration energy and entropy, respectively. T is the temperature (298.15 K). ΔG_U =-eU, here U is the potential applied to the electrode. ΔG_{pH} is the correction of the H⁺ free energy.

The definition of the magnetic moment (M) is

M = N (spin-up) - N (spin-down)	(15)
---------------------------------	------

$$M = M (3dxy) + M (3dx^2 - y^2) + M (3dz^2) + M (3dxz) + M (3dyz)$$
(16)

Here, N(spin-up) and N(spin-down) denote the number of electrons in the spin-up and spin-down occupied states, respectively.^{2,3} M (3*dx*²), M (3*dx*²), M (3*dx*²), M (3*dx*²), and M (3*dyz*) indicate the projected of magnetic moments on Fe 3*dxy*, 3*dx*²-*y*², 3*dz*², 3*dxz*, and 3*dyz*, respectively.

Figure S1. (a) SEM images of NC. (b) SEM images of Fe $_{\rm SAC}$ -NC.

Figure S2. EELS point spectrum of Fe_{SAC}-NC. (a) full spectrum. (b) C spectrum. (c) N spectrum. (d) Fe spectrum.

Figure S3. (a) N_2 adsorption-desorption curves of Fe_{SAC}-NC. (b) Pore distribution curve of Fe_{SAC}-NC.

Figure S4. (a) N₂ adsorption-desorption curves of FeN₄. (b) Pore distribution curve of FeN₄.

Figure S5. TGA curve of Fe_{SAC} -NC tested in air ambient.

Figure S6. k^3 -weighted Fourier transform spectra of Fe_{SAC}-NC and corresponding fitting curve.

Figure S7. The normalized XANES spectra at the C K-edge of FeN_4 and Fe_{SAC} -NC.

Figure S8. (a) The CV curves of Fe_{SAC} -NC in O₂ (solid) or Ar (dotted)-saturated 0.1M KOH. (b) The CV curves of 20% Pt/C in O₂ (solid) or Ar(dotted)-saturated 0.1M KOH.

Figure S9. LSV curve of NC.

Figure S10. (a) LSVs curves of Fe_{SAC} -NC measured at different RDE rotating speed in O₂-saturated electrolytes. (b) The corresponding K-L plot of Fe_{SAC} -NC.

Figure S11. (a) LSVs curves of FeN_4 measured at different RDE rotating speed in O₂-saturated electrolytes. (b) The corresponding K-L plot of FeN_4 .

Figure S12. (a) RRDE test of FeN₄. (b) Electron transfer number (n) and H_2O_2 yield calculated from RRDE measurement of FeN₄.

Figure S13. (a) CV curves for Fe_{SAC} -NC in the region of 1.06-1.18 V vs. RHE with various scan rates. (b) Scan-rate dependency of the current density for Fe_{SAC} -NC.

Figure S14. (a) CV curves for FeN_4 in the region of 1.06-1.18 V vs. RHE with various scan rates. (b) Scan-rate dependency of the current density for FeN_4 .

Figure S15. (a) HRTEM image of Fe_{SAC} -NC after ORR measurement. (b) XRD patterns of Fe_{SAC} -NC before and after ORR measurement. (c) Raman spectra of Fe_{SAC} -NC before and after ORR measurement.

Figure S16. Methanol crossover effect test of Fe_{SAC}-NC and 20% Pt/C.

Figure S17. Optimized structure of (a) $Fe_{SAC}-N_1C$. (b) $Fe_{SAC}-N_2C$. (c) $Fe_{SAC}-N_3C$. (d) $Fe_{SAC}-N_4C$. (e) $Fe_{SAC}-N_5C$. (f) $Fe_{SAC}-N_6C$. (g) $Fe_{SAC}-N_7C$. (h) $Fe_{SAC}-N_8C$. (i) $Fe_{SAC}-N_9C$. (j) $Fe_{SAC}-N_{10}C$. (k) $Fe_{SAC}-N_{11}C$. (l) $Fe_{SAC}-N_{12}C$. (m) $Fe_{SAC}-N_{13}C$. (n) $Fe_{SAC}-N_{14}C$. (o) $Fe_{SAC}-N_{15}C$. (p) $Fe_{SAC}-N_{16}C$. (q) $Fe_{SAC}-N_{17}C$. (r) FeN_4 . (The names are derived from the N atoms respective locations.)

Figure S18. (a) The formation energy of Fe_{SAC} -N_XC (X=1-17). (b) The binding energy of Fe site on Fe_{SAC} -N_XC (X=1-17). (b) The binding energy of Fe site on Fe_{SAC}-N_XC (X=1-17).

Figure S19. (a) Differential charge density of Fe_{SAC} -N₃C. (b) Differential charge density of FeN₄. Yellow regions indicate charge accumulation, while cyan regions indicate charge depletion. As for FeN₄, the electrons are transferred from Fe to N, resulting in a distinct depletion of charge density on the Fe site, which is consistent with the results of XAS and XPS.

Figure S20. Detailed DOS of Fe d orbitals: (a) $Fe_{SAC}-N_1C$, (b) $Fe_{SAC}-N_2C$, (c) $Fe_{SAC}-N_3C$, (d) $Fe_{SAC}-N_4C$, (e) $Fe_{SAC}-N_5C$, (f) $Fe_{SAC}-N_6C$, (g) $Fe_{SAC}-N_7C$, (h) $Fe_{SAC}-N_8C$, (i) $Fe_{SAC}-N_9C$, (j) $Fe_{SAC}-N_{10}C$, (k) $Fe_{SAC}-N_{11}C$, (l) $Fe_{SAC}-N_{12}C$, (m) $Fe_{SAC}-N_{13}C$, (n) $Fe_{SAC}-N_{14}C$, (o) $Fe_{SAC}-N_{15}C$, (p) $Fe_{SAC}-N_{16}C$, (q) $Fe_{SAC}-N_{17}C$ and (r) FeN_4 .

Figure S21. Schematic illustration of different hybridization modes of 3dyz (3dxz), $3dz^2$ and OH $2\pi^*$ orbital. (Δ h means the spatial height difference.)

Figure S22. The schematic of each Fe-N bond length of $Fe_{SAC}-N_xC(x=1-17)$.

Sample	BET surface area $(m^2 \cdot g^{-1})$	Total volume (cm ³ ·g ⁻¹)	Mesopore size (nm)
NC	255	0.29	5.4
Fe _{SAC} -NC	725	1.66	15.4
FeN ₄	752	3.77	21.2

Table S1. Summary of NC, $\mbox{Fe}_{SAC}\mbox{-}NC,$ and $\mbox{Fe}\mbox{N}_4$ BET data.

Table S2. Elemental composition of Fe_{SAC} -NC.

	elemental	analyzer		ICP	TGA
C (wt.%)	N (wt.%)	O (wt.%)	H (wt.%)	Fe(w	vt.%)
81.38	8.97	3.21	0.96	5.48	5.39

Samples	Shell	Ν	R (Å)	$\Delta\sigma^2\times 10^3(\text{\AA}^2)$	$\Delta E_0 (eV)$	R-factor
Fe foil	Fe-Fe	8	2.42±0.01	6.8 ± 1.2	10.6 ± 0.8	0.027
	Fe-Fe	6	2.84±0.01	9.0 ± 2.1	10.1 ± 0.4	0.057
FeN4	Fe-N	4	1.89±0.01	3.1±1.6	1.2±0.1	0.019
Fe _{SAC} -NC	Fe-N	3.7	1.90±0.02	8.17± 1.1	-7.8±0.5	0.042

Table S3. EXAFS fitting parameters of Fe foil and Fe_{SAC} -NC.

Sample	Fe foil	Fe ₂ O ₃	FeN ₄	Fe _{SAC} -NC
$E_0 (eV)$	7112.216	7126.305	7122.311	7123.292

Table S4. Summarize the E_0 values of standard reference materials and Fe_{SAC} -NC.

Table S5. Summary of the Mossbauer parameters and assignments to different Iron species in Fe _{SAC} -NC.						
Fe species	IS (mm ⁻¹)	QS (mm ⁻¹)	LW (mm ⁻¹)	Content (%)	Valence-state	
D1	-0.06	0.11	0.58	8.1	α-Fe	
D2	0.33	1.38	0.53	30.2	FeN ₄ ,LS	
D3	-0.10	0.86	0.50	61.7	Fe ^{III} N ₄ ,MS	

Sample	Sample Onset potential		Ref
	(V vs. RHE)	(V vs. RHE)	
Fe _{SAC} -NC	1.06	0.90	our work
Ru-SAS/SNC	0.998	0.861	4
Cu/Zn-NC	0.98	0.83	2
Co-N/C+NG	1.04	0.915	3
Fe-N-CDC/CNT	0.99	0.86	4
Fe-NiNC-50	1.0	0.84	5
FeSA/HNPC	0.92	0.83	6
Cu-S ₁ N ₃	1.05	0.918	7
Ni-N ₄ /GHSs/Fe-N ₄	0.93	0.83	8
Co ₁ -N ₃ PS/HC	1.00	0.91	9
PSTA-Co-1000	0.96	0.878	10
Fe-N/P-C-700	0.941	0.867	11
Fe/OES	1.00	0.85	12

Table S6. Summarize the most near-term reported single atoms-based electrocatalysts.
--

Table S7. Fe-N1, Fe-N2, Fe-N3, Fe-N4 and the average Fe-N bond length over Fe-N-C catalysts.						
Catalysts	Fe-N1 (Å)	Fe-N2 (Å)	Fe-N3 (Å)	Fe-N4 (Å)	Average Fe-N (Å)	
Fe _{SAC} -N ₁ C	1.90	1.90	1.90	1.90	1.90	
Fe _{SAC} -N ₃ C	1.91	1.90	1.91	1.89	1.90	
Fe _{SAC} -N ₄ C	1.90	1.90	1.89	1.91	1.90	
Fe _{SAC} -N ₁₆ C	1.92	1.89	1.92	1.89	1.91	

Catalysts	$\Delta G_{*O}(eV)$	$\Delta G_{*OH}(eV)$	$\Delta G_{*OOH}(eV)$
Fe _{SAC} -N ₁ C	1.93	0.84	3.56
Fe _{SAC} -N ₂ C	1.74	0.86	3.54
Fe _{SAC} -N ₃ C	1.70	0.84	3.60
Fe _{SAC} -N ₄ C	1.81	0.86	3.51
Fe _{SAC} -N ₅ C	1.70	0.80	3.52
Fe _{SAC} -N ₆ C	1.66	0.86	3.48
Fe _{SAC} -N ₇ C	1.65	0.83	3.48
Fe _{SAC} -N ₈ C	1.65	0.85	3.49
Fe _{SAC} -N ₉ C	1.66	0.84	3.53
Fe _{SAC} -N ₁₀ C	1.66	0.82	3.53
Fe _{SAC} -N ₁₁ C	1.66	0.86	3.61
Fe _{SAC} -N ₁₂ C	1.75	0.82	3.49
Fe _{SAC} -N ₁₃ C	1.65	0.75	3.40
Fe _{SAC} -N ₁₄ C	1.65	0.83	3.49
Fe _{SAC} -N ₁₅ C	1.77	0.82	3.51
Fe _{SAC} -N ₁₆ C	1.76	0.85	3.53
Fe _{SAC} -N ₁₇ C	1.66	0.84	3.50
FeN ₄	1.39	0.58	3.56

Table S8. Adsorption free energies of *O, *OH, and *OOH on $Fe_{SAC}-N_XC(X=1-17)$.

Catalysts	$\Delta G_1(eV)$	$\Delta G_2(eV)$	$\Delta G_3(eV)$	$\Delta G_4(eV)$	$\Delta G_5(eV)$
Fe _{SAC} -N ₁ C	-0.51	-0.85	-1.63	-1.09	-0.84
Fe _{SAC} -N ₂ C	-0.52	-0.86	-1.80	-0.87	-0.86
Fe _{SAC} -N ₃ C	-0.55	-0.76	-1.90	-0.86	-0.84
Fe _{SAC} -N ₄ C	-0.55	-0.86	-1.82	-0.90	-0.80
Fe _{SAC} -N ₅ C	-0.52	-0.89	-1.70	-0.95	-0.86
Fe _{SAC} -N ₆ C	-0.70	-0.74	-1.82	-0.80	-0.86
Fe _{SAC} -N ₇ C	-0.50	-0.94	-1.83	-0.82	-0.83
Fe _{SAC} -N ₈ C	-0.42	-1.01	-1.84	-0.80	-0.85
Fe _{SAC} -N ₉ C	-0.46	-0.93	-1.87	-0.82	-0.84
Fe _{SAC} -N ₁₀ C	-0.51	-0.87	-1.88	-0.83	-0.82
Fe _{SAC} -N ₁₁ C	-0.71	-0.72	-1.85	-0.89	-0.86
Fe _{SAC} -N ₁₂ C	-0.67	-0.84	-1.82	-0.84	-0.82
Fe _{SAC} -N ₁₃ C	-0.54	-0.98	-1.75	-0.90	-0.75
Fe _{SAC} -N ₁₄ C	-0.53	-0.90	-1.84	-0.82	-0.83
Fe _{SAC} -N ₁₅ C	-0.53	-0.88	-1.74	-0.95	-0.82
Fe _{SAC} -N ₁₆ C	-0.53	-0.87	-1.77	-0.91	-0.85
Fe _{SAC} -N ₁₇ C	-0.53	-0.89	-1.84	-0.82	-0.84
FeN ₄	-0.70	-0.67	-2.17	-0.81	-0.58

Table S9. Reaction free energy of elementary step for ORR at U = 0 V vs. RHE on Fe_{SAC}-N_XC(X=1-17).

References

- 1. J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.
- M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang, C. Tian, L. Wang and H. Fu, *Angew. Chem. Int. Ed.*, 2021, 60, 14005-14012.
- X. Zhang, X. Xu, S. Yao, C. Hao, C. Pan, X. Xiang, Z. Q. Tian, P. K. Shen, Z. Shao and S. P. Jiang, *Small*, 2022, 18, e2105329.
- 4. J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu, J. C. Douglin, M. Kaarik, J. Kozlova, P. Paiste, A. Kikas, J. Aruvali, J. Leis, V. Sammelselg, D. R. Dekel and K. Tammeveski, *ACS Catal.*, 2021, **11**, 1920-1931.
- X. Zhu, D. Zhang, C.-J. Chen, Q. Zhang, R.-S. Liu, Z. Xia, L. Dai, R. Amal and X. Lu, *Nano Energy*, 2020, 71, 104597.
- X. Jin, Y. Xie, J. Fu, C. Zhao, Y. Xu, Y. Lv, B. Zhang, K. Sun, R. Si and J. Huang, *ChemCatChem*, 2021, 13, 2683-2690.
- H. Shang, X. Zhou, J. Dong, A. Li, X. Zhao, Q. Liu, Y. Lin, J. Pei, Z. Li, Z. Jiang, D. Zhou, L. Zheng, Y. Wang, J. Zhou, Z. Yang, R. Cao, R. Sarangi, T. Sun, X. Yang, X. Zheng, W. Yan, Z. Zhuang, J. Li, W. Chen, D. Wang, J. Zhang and Y. Li, *Nat. Commun.*, 2020, 11, 3049-3059.
- 8. J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu and T. Ma, *Adv. Mater.*, 2020, **32**, e2003134.
- Y. Chen, R. Gao, S. Ji, H. Li, K. Tang, P. Jiang, H. Hu, Z. Zhang, H. Hao, Q. Qu, X. Liang, W. Chen, J. Dong, D. Wang and Y. Li, *Angew. Chem. Int. Ed.*, 2021, **60**, 3212-3221.
- X. Wei, D. Zheng, M. Zhao, H. Chen, X. Fan, B. Gao, L. Gu, Y. Guo, J. Qin, J. Wei, Y. Zhao and G. Zhang, *Angew. Chem. Int. Ed.*, 2020, **59**, 14639-14646.
- K. Yuan, D. Luetzenkirchen-Hecht, L. Li, L. Shuai, Y. Li, R. Cao, M. Qiu, X. Zhuang, M. K. H. Leung, Y. Chen and U. Scherf, *J. Am. Chem. Soc.*, 2020, 142, 2404-2412.
- 12. C.-C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu, Y. Li, C. Li, R. Zou, J. Yu and Q. Xu, *Angew. Chem. Int. Ed.*, 2020, **59**, 7384-7389.