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Acronyms 

a: Lattice parameter 

AC: Alcohol concentration 

AcP: Active photons flux 

AMW: Alcohol molecular weight 

ApP: Apparent photon flux 

AT: Alcohol type 

ATI: Alcohol type indicator 

CAN: Cocatalyst atomic number 

CCT: Cocatalyst type 

CEN: Cocatalyst electronegativity 

CL: Cocatalyst loading 

CWF: Cocatalyst work function 

D: Cocatalyst dispersion 

danatase: Size of anatase crystal 

drutile: Size of anatase crystal 

Eg: Bandgap 

gcatalyst: Photocatalyst loading 

HY: Hydrogen yield 

LI: Light intensity  

Nactive: Total amount of cocatalyst active sites 

RMSE: Root mean squared error 

Sm: Surface area per atom  

SSA: Specific surface area 

tcalcination: Calcination time 

Tcalcination: Calcination temperature 

Vm: atomic volume 



Rate: Hydrogen evolution rate 

Xanatase: Fraction of anatase phase 

Xrutile: Fraction of rutile phase 

  



Dataset analysis 

Following features were extracted from the published papers: Hydrogen evolution rate, 

activity, cocatalyst type, cocatalyst loading, cocatalyst atomic number, cocatalyst 

electronegativity, cocatalyst work function, organic doner type, alcohol concentration, 

alcohol molecular weight, number of hydroxyl group, number of hydrogen atoms, number of 

alpha hydrogens, polarity, liquid solvent volume, reaction time, photocatalyst type, 

photocatalyst loading, photocatalyst bandgap, specific surface area, rutile phase fraction, 

anatase phase fraction, brookite phase fraction, rutile crystal size, anatase crystal size, space 

group number, space group symbol, synthesises method name, synthesises method 

description, calcination time, calcination temperature, activity promotion method, activity 

promotion method description, pore volume, pore diameter, lamp type, lamp power, light 

intensity, light intensity in Einstein, irradiation area, irradiation distance, photonic photon, 

apparent photon flux, active photon flux, photonic efficiency, and apparent quantum 

efficiency. 

 
Figure S1. Breakdown of (a) types of TiO2 photocatalysts, (b) synthesis methods of TiO2, (c) 

cocatalyst deposition methods among the 946 entries of the literature-extracted dataset. 

 

To prepare the database for statistical analysis, A set of techniques including missing value 

replacement, categorical data handling, scaling, and feature selection must apply to data. In 

this study, data from all designed experiments had no problem with missing values but 

extracted data from literature was highly inconsistent and 42 percent of information was not 

reported. To avoid computational issues, samples with missing information were removed. 

After dealing with categorical features, data was scaled to range between [-1, 1] to avoid 

scaling effects for further analysis.  

  



Feature Engineering 

Calculation of apparent and active photon fluxes 

 

Figure S2. Simulated solar A.M. 1.5 G (Newport, Sol3A) spectrum at 1 sun (100 mW 

cm-2) intensity with the shaded areas representing (a) apparent photon flux, 𝐴𝑝𝑃(𝜆, 𝐼) 

and (b) the active photon flux, 𝐴𝑐𝑃(𝜆, 𝐼), that can be absorbed by the TiO2. (c) The 

molar absorption coefficient of TiO2 showing the photoabsorption range for the 

calculation of AcP. 

For any defined light source of known spectrum and intensity, the apparent photon flux, 

𝐴𝑝𝑃(𝜆, 𝐼) can be calculated by integrating the whole light spectrum. For example, the 

𝐴𝑝𝑃(𝜆, 𝐼) of simulated solar spectrum (A.M. 1.5 G, 1 sun):  



𝐴𝑝𝑃(𝜆, 𝐼) 	= 	,
𝐼!"#$ 	
𝐸%

𝑑𝜆 = 	3.96	 × 10&'	𝑝ℎ𝑜𝑡𝑜𝑛	𝑠(&	𝑐𝑚()
*

+
 Eq. S1 

Besides, the available active photon flux, 𝐴𝑐𝑃(𝜆, 𝐼), can be calculated by integrating at and 

below the absorption threshold. For example, in the case of anatase TiO2 suspension of 

bandgap 3.2 eV (absorption threshold 388 nm) irradiated under simulated solar spectrum 

(A.M. 1.5 G, 1 sun):  

𝐴𝑐𝑃(𝜆, 𝐼) 	= 	,
𝐼!"#$ 	
𝐸%

𝑑𝜆 = 6.78	 × 10&,	𝑝ℎ𝑜𝑡𝑜𝑛	𝑠(&	𝑐𝑚()
-..	01

+
 Eq. S1 

where 𝜆 is wavelength in nm,  𝐼!"#$ is spectral irradiance in mW cm-2 nm-1, 𝐸%	is the energy 

of a photon at the specific wavelength in mJ. 

 

The total photon flux absorbed by the TiO2, or active photon flux (AcP) can be calculated 

from 

𝑁23!(𝜆, 𝐼, 𝛼, 𝑡) = 	,
𝐼!"#$ 	× (1 − 10(2)

𝐸%
𝑑𝜆

-..	01

+
 Eq. S2 

 

where A is the absorbance of TiO2 given by, 

𝐴	(𝜆, 𝛼, 𝑡) = 		
𝛼(𝜆)(𝑐𝑚(&) 	× 	𝐶	(g	L(&) 	× 	𝑡"#0(𝑐𝑚)

𝜌	(𝑔	𝑐𝑚(-) 	× 	1000  Eq. S3 

where 𝛼 is the molar absorption coefficient of TiO2 (see Figure S2b), C is the concentration 

of TiO2, 𝑡"#0 is the light penetration depth into the suspension, 𝜌 is the bulk density of TiO2. 

By integrating Eq. S2 at C = 1 g L-1 of TiO2, 𝜌 = 4.26	𝑔	𝑐𝑚(- and at 𝑡"#0 = 4.3	𝑐𝑚, the 

𝑁23!(𝜆, 𝐼) was calculated to be 6.71 x 1015 photon s-1 cm-2. 

 



 

Figure S3. Fraction of active photon flux above 𝐸% absorbed by TiO2 along the 

penetration depth. The following parameters were used in the calculation: the 

concentration of TiO2 = 1 g L-1 and the density of TiO2 = 4.26 g cm-3 

 

The fraction of photon absorbed to that available at 𝑡"#0 = 4.3	𝑐𝑚 can thus be given as, 

𝜑2$4 =
𝑁23!(𝜆, 𝐼, 𝛼, 𝑡)
𝐴𝑐𝑃(𝜆, 𝐼) = 	

6.71	 × 10&,	𝑝ℎ𝑜𝑡𝑜𝑛	𝑠(&	𝑐𝑚()	
6.78	 × 10&,	𝑝ℎ𝑜𝑡𝑜𝑛	𝑠(&	𝑐𝑚() = 0.99 Eq. S4 

  
From Figure S3, it can be seen that 99% of the available active photons are absorbed within 

4.3 cm of the TiO2 suspension, thus representing a typically small fraction of the suspension 

volume near the surface where the photocatalyst can be activated. 

 

Categorical feature representation (CT and AT) 

The effect of different types of cocatalysts and alcohol in the machine learning model was 

considered. These features are categorical and need encodings before using for modeling. 

Common methods of encoding such as one hot encoding are not suitable. Since various types 

of cocatalysts and alcohol are available in the current database and if one hot encoding is 

used, the number of features increases significantly which is not consistent with a limited 

number of data. Here cocatalyst atomic number (CAN), cocatalyst electronegativity (CEN), 



and cocatalyst work function (CWF) were used instead of categorical feature for cocatalyst 

type and alcohol molecular weight (AMW) instead of categorical feature for alcohol type.  

Table S1 shows the initial statistical information of the extracted data from the literature.  

 

 



Table S1. List of all features from literature-extracted dataset and their statistical ranges. A high standard deviation (std dev) is an indicator of a wide coverage range of input data.
Metric Count Mean Std Min Q1 Q2 Q3 Max Skewness Kurtosis Entropy 1 Entropy 2 Gini index Excluding criteria

Pore volume 275 - - - - - - - 7.2 58.2 6.4 2.98 0.97 4, 6
Pore diameter 174 10.64 8.39 1.58 5.41 6.76 14.4 35.2 3.39 10.82 4.75 2.73 0.93 4, 6
SSA 833 71.6 66.1 1 43.3 47 75.8 600 -5.43 37.4 8.4 3.47 0.85
E g 726 31.4 0.11 2.25 3.1 3.15 3.2 3.54 -4.35 32.1 8.41 2.3 0.71
X anatase 879 0.136 0.19 0 0 0.1431 0.16 1 8.38 93.1 8.29 1.9 0.66
T calcination 934 374 218 0 300 400 500 1000 -0.23 2.04 8.29 1.68 0.62
Space group number 781 - - - - - - - 1.36 0.34 1.75 2.07 0.6 1
Space group symbol 781 - - - - - - - 1.36 0.34 1.75 2.07 0.6 1
Synthesis method 927 - - - - - - - 1.93 2.42 1.63 1.71 0.57 1
d rutile 506 54.4 70.1 0 43 50 50 1090 7.73 63.5 8.33 1.54 0.53
Photocatalyst 924 - - - - - - - 0.89 -0.98 1.07 1.38 0.49 1, 3
Brookite phase fraction 37 0.78 0.4 0 1 1 1 1 0.57 -1.5 0.87 1.82 0.34 3, 6
d anatase 763 23.8 16.2 3.9 13.6 25 25 249 11.5 139 8.28 0.98 0.31 3
t calcination 930 2.41 4.27 0 2 2 2 80 -2.29 10.8 8.3 0.44 0.14 3

CT 946 - - - - - - - 0.93 -0.52 2.55 2.36 0.79 1
Promotion method 790 - - - - - - - 0.75 -1.11 2.31 2.42 0.76 1
CL 945 1.14×10-2 1.33×10-2 0 5×10-3 1×10-2 2×10-2 0.2 3.56 3.08 8.02 2.41 0.75
CAN 945 52.2 30.4 0 28 78 79 79 0.193 -1.53 8.17 2.05 0.71
CEN 945 1.94 0.82 0 1.91 2.28 2.54 2.68 -2.38 7.41 8.33 2.05 0.71
CWF 945 4.35 1.83 0 4.53 5.06 5.54 5.54 -4.16 16.2 8.34 1.82 0.67

Lamp type 927 - - - - - - - 3.84 15.34 3.56 2.25 0.84 1, 4
Lamp power 904 - - - - - - - 2.08 2.89 3.14 2.19 0.84 1, 4
AcP 499 1.63×10171.21×10181.70×10166.22×10166.32×10166.32×10161.92×1019 -2.89 6.75 8.4 2.16 0.69
LI in Einstein 43 2.06×10-6 2.01×10-6 6×10-8 1.67×10-7 3.79×10-7 4.2×10-6 4.2×10-6 0.38 -1.42 1.75 2.9 0.66 6
ApP 523 1.06×10191.65×10202.28×1016 2.4×1017 2.4×1017 2.4×1017 2.67×1021 2.8 5.95 1.26 1.21 0.35 3, 4
LI 830 14.6 32.1 2.2 6.5 6.5 6.5 250 -2.88 9.22 8.39 0.89 0.33 3, 4
Irradiation area 504 11.95 3.21 2.85 12.88 12.88 12.88 20 0.68 -1.5 0.59 1.24 0.21 3, 4

Polarity 10 0.62 0.24 0.11 0.55 0.63 0.78 1 0 -3 3.32 3.32 0.9 6
No. of alpha hydrogens 10 2 1.63 0 1 2 2.75 5 0.62 -0.96 2.44 3.14 0.88 6
AC 933 0.28 0.29 0 0.1 0.1 0.4 1 0.59 -1.26 7.73 3.67 0.88
AMW 946 51.1 25.9 18 32 46.1 62.1 149 0.82 -0.52 8.32 2.05 0.71
AT 945 - - - - - - - 1.52 0.97 2.1 2.02 0.7 1
ATI 927 0.11 1.03 -2.15 -0.17 0.21 0.96 0.96 1.24 0.14 2.09 2.19 0.7
No. of hydrogen atoms 10 6.8 2.52 2 6 7 8 10 0 -1.75 2.17 3.1 0.7 6
No. of hydroxyl groups 10 1.2 0.78 0 1 1 1 3 1.15 -0.66 1.35 2.25 0.48 6

HY 923 1.24×104 2.25×104 0 1800 8000 1.85×104 0.554 0.35 -0.25 8.08 7.63 0.99 2
Rate 885 4.4×102 1.2×103 0 57.8 1.31×102 3.3×102 2.77×103 2.14 4.32 7.62 3.27 0.99
Photonic efficiency 183 0.27 0.19 1.82×10-4 0.12 0.26 0.38 1.04 3.18 8.15 7.37 3.3 0.99 2
AQE 184 7.26×10-2 5.19×10-2 0 3.12×10-2 6.9×10-2 0.1 0.27 2.25 4.34 7.15 3.27 0.99 2
Solution volume 781 0.34 2 0.01 0.02 0.07 0.2 18.75 3.47 11.8 2.97 2.15 0.77 4
Reaction time 159 - - - - - - - 2.11 3.6 2.57 2.47 0.75 4
g catalyst 904 0.1 0.2 5×10-3 6.5×10-3 1.2×10-2 0.1 2 3.65 12.7 2.65 1.94 0.71 4
Excluding criteria:  (1) Descriptive feature,  (2) Need Rate for calculations,  (3) Gini index lower than 0.5,  (4) High positive kurtosis/high skewness,  (5) Low standard deviation,  (6) High missing value

Reaction features

Organic substrate features

Light source features

Cocatalyst features

Photocatalyst features



 

 

 

 

 

Table S1. List of all features from literature-extracted dataset and their statistical ranges. A high standard deviation (std dev) is an indicator of a wide coverage range of input data.
Metric Count Mean Std Min Q1 Q2 Q3 Max Skewness Kurtosis Entropy 1 Entropy 2 Gini index Excluding criteria

Pore volume 275 - - - - - - - 7.2 58.2 6.4 2.98 0.97 4, 6
Pore diameter 174 10.64 8.39 1.58 5.41 6.76 14.4 35.2 3.39 10.82 4.75 2.73 0.93 4, 6
SSA 833 71.6 66.1 1 43.3 47 75.8 600 -5.43 37.4 8.4 3.47 0.85
E g 726 31.4 0.11 2.25 3.1 3.15 3.2 3.54 -4.35 32.1 8.41 2.3 0.71
X anatase 879 0.136 0.19 0 0 0.1431 0.16 1 8.38 93.1 8.29 1.9 0.66
T calcination 934 374 218 0 300 400 500 1000 -0.23 2.04 8.29 1.68 0.62
Space group number 781 - - - - - - - 1.36 0.34 1.75 2.07 0.6 1
Space group symbol 781 - - - - - - - 1.36 0.34 1.75 2.07 0.6 1
Synthesis method 927 - - - - - - - 1.93 2.42 1.63 1.71 0.57 1
d rutile 506 54.4 70.1 0 43 50 50 1090 7.73 63.5 8.33 1.54 0.53
Photocatalyst 924 - - - - - - - 0.89 -0.98 1.07 1.38 0.49 1, 3
Brookite phase fraction 37 0.78 0.4 0 1 1 1 1 0.57 -1.5 0.87 1.82 0.34 3, 6
d anatase 763 23.8 16.2 3.9 13.6 25 25 249 11.5 139 8.28 0.98 0.31 3
t calcination 930 2.41 4.27 0 2 2 2 80 -2.29 10.8 8.3 0.44 0.14 3

CT 946 - - - - - - - 0.93 -0.52 2.55 2.36 0.79 1
Promotion method 790 - - - - - - - 0.75 -1.11 2.31 2.42 0.76 1
CL 945 1.14×10-2 1.33×10-2 0 5×10-3 1×10-2 2×10-2 0.2 3.56 3.08 8.02 2.41 0.75
CAN 945 52.2 30.4 0 28 78 79 79 0.193 -1.53 8.17 2.05 0.71
CEN 945 1.94 0.82 0 1.91 2.28 2.54 2.68 -2.38 7.41 8.33 2.05 0.71
CWF 945 4.35 1.83 0 4.53 5.06 5.54 5.54 -4.16 16.2 8.34 1.82 0.67

Lamp type 927 - - - - - - - 3.84 15.34 3.56 2.25 0.84 1, 4
Lamp power 904 - - - - - - - 2.08 2.89 3.14 2.19 0.84 1, 4
AcP 499 1.63×10171.21×10181.70×10166.22×10166.32×10166.32×10161.92×1019 -2.89 6.75 8.4 2.16 0.69
LI in Einstein 43 2.06×10-6 2.01×10-6 6×10-8 1.67×10-7 3.79×10-7 4.2×10-6 4.2×10-6 0.38 -1.42 1.75 2.9 0.66 6
ApP 523 1.06×10191.65×10202.28×1016 2.4×1017 2.4×1017 2.4×1017 2.67×1021 2.8 5.95 1.26 1.21 0.35 3, 4
LI 830 14.6 32.1 2.2 6.5 6.5 6.5 250 -2.88 9.22 8.39 0.89 0.33 3, 4
Irradiation area 504 11.95 3.21 2.85 12.88 12.88 12.88 20 0.68 -1.5 0.59 1.24 0.21 3, 4

Polarity 10 0.62 0.24 0.11 0.55 0.63 0.78 1 0 -3 3.32 3.32 0.9 6
No. of alpha hydrogens 10 2 1.63 0 1 2 2.75 5 0.62 -0.96 2.44 3.14 0.88 6
AC 933 0.28 0.29 0 0.1 0.1 0.4 1 0.59 -1.26 7.73 3.67 0.88
AMW 946 51.1 25.9 18 32 46.1 62.1 149 0.82 -0.52 8.32 2.05 0.71
AT 945 - - - - - - - 1.52 0.97 2.1 2.02 0.7 1
ATI 927 0.11 1.03 -2.15 -0.17 0.21 0.96 0.96 1.24 0.14 2.09 2.19 0.7
No. of hydrogen atoms 10 6.8 2.52 2 6 7 8 10 0 -1.75 2.17 3.1 0.7 6
No. of hydroxyl groups 10 1.2 0.78 0 1 1 1 3 1.15 -0.66 1.35 2.25 0.48 6

HY 923 1.24×104 2.25×104 0 1800 8000 1.85×104 0.554 0.35 -0.25 8.08 7.63 0.99 2
Rate 885 4.4×102 1.2×103 0 57.8 1.31×102 3.3×102 2.77×103 2.14 4.32 7.62 3.27 0.99
Photonic efficiency 183 0.27 0.19 1.82×10-4 0.12 0.26 0.38 1.04 3.18 8.15 7.37 3.3 0.99 2
AQE 184 7.26×10-2 5.19×10-2 0 3.12×10-2 6.9×10-2 0.1 0.27 2.25 4.34 7.15 3.27 0.99 2
Solution volume 781 0.34 2 0.01 0.02 0.07 0.2 18.75 3.47 11.8 2.97 2.15 0.77 4
Reaction time 159 - - - - - - - 2.11 3.6 2.57 2.47 0.75 4
g catalyst 904 0.1 0.2 5×10-3 6.5×10-3 1.2×10-2 0.1 2 3.65 12.7 2.65 1.94 0.71 4
Excluding criteria:  (1) Descriptive feature,  (2) Need Rate for calculations,  (3) Gini index lower than 0.5,  (4) High positive kurtosis/high skewness,  (5) Low standard deviation,  (6) High missing value

Reaction features

Organic substrate features

Light source features

Cocatalyst features

Photocatalyst features



 
Figure S4. Statistical analysis of numerical features in the literature-extracted dataset using 

(a) box plot and (b) distribution. The high number of outliers and skewed distribution shows 

inconsistency in the dataset.  

 

To narrow the selection of features from Table S1, following criteria were considered. First, 

we excluded all descriptive features (i.e., lamp type, synthesis method description, promotion 

methods, and so on). Next, all features that require Rate for calculations were removed since 

Rate is the target and supposed to be unknown during prediction (i.e., AQE, photonic 

efficiency). Features with Gini Index lower than 0.5 were excluded (i.e., irradiation area). We 

also removed features with a lot of missing values (i.e., LI). For the features belonging to the 

same group such as CWF, CAN, and CEN that represent the cocatalyst type information, 

only one representative feature is considered for modelling as shown in Figure S5. In the case 

of alcohol type, ATI is formulated as a representative feature. Because the ATI was 

calculated using related features of alcohol, e.g., AMW, No. of alpha hydrogens, No. of 

hydroxyl groups, these terms naturally become redundant. The advantage of ATI, compared 

to individual features that only partially describe the molecule itself, is better standard 

deviation, lower skewness and kurtosis (as elaborated in the Alcohol type indicator section). 

For features within the same group, the one with more negative kurtosis and/or higher 

standard deviation was selected. Features with large positive kurtosis, e.g., pore diameter and 

pole volume, were excluded due to the large number of outliers. The outliers of selected 

features are readily shown in the Figure S4. As shown in Figure S4, the distribution of the 



extracted data from the literature includes many outliers which made challenges in the model 

training step. Some features (e.g., CL and AC) have a normal distribution, while others (e.g., 

danatase, drutile, and SSA) include skewed distribution with many outliers. 

 

 
Figure S5. The covariance (linear relationship) of the numerical feature of the literature-

extracted dataset. Extreme colors show a strong correlation between every two features.  

 

The correlation coefficient of all numerical features of the extracted data from the literature is 

shown in Figure S5. A fair correlation between all features is visible from the figure which 

indicates the independency of the feature and the highly non-linear nature of the problem. 

Figure S6 shows the fuzzy curves results, where from fuzzy surfaces analysis the removal of 

AMW and LI was recommended.  

 



 
Figure S6. Normalized fuzzy curve coefficient for the numerical features of the literature-
extracted dataset. The high fuzzy curve coefficient shows the nonlinear relationship of feature 
with Rate.  
 

 
Figure S7. Features selection based on the Gini index and covariance of input features with 

HER rate. Highlighted rows in orange are features related to the type of the cocatalyst and 

while green rows are related to the TiO2 structure. 

 

Due to high number of missing information for Rate, we performed features selection 

analysis using HY, which has a high linear correlation with Rate. Doing so allows us to 

access a larger dataset despite the high interchangeability of the two. Features Xrutile, Xanatase, 

danatase and drutile are related to the structural information of photocatalysts, while Tcalcination and 

tcalcination directly impacts the photocatalysts structure. Since only TiO2 photocatalyst was used 

and Eg is an abstract representation of the structural effects of photocatalyst, Xrutile, Xanatase, 

danatase, drutile, Tcalcination and tcalcination can be ignored against Eg. Moreover, these features are 

highly linearly correlated in binary form (e.g., danatase with drutile, Xanatase with Xrutile, and 



Tcalcination with tcalcination). Hence, there exists redundancies if all are added to the model input. 

In addition, based on statistical information on these features in Table S1 and their box plot in 

Figure S4, substantial amount of outliers for these features were seen. Hence, their 

distributions are not very helpful as specific descriptors compared with Eg. Finally, since Eg is 

embedded in the AcP calculations, it does not need to be an explicit feature.  

Among descriptors for the type of cocatalyst, CEN, CAN, and CWF were used. Based on the 

statistical information (Table S1) a better distribution for CAN and CWF in comparison with 

CEN was seen. Moreover, in the box plot (Figure S4a), a better distribution for CAN in 

comparison with CEN was seen. Fuzzy curve analysis (Figure S6) did not show significant 

differences between CEN and CAN. Since CWF is a direct quantity describing the all-

important Schottky barrier that dictates the efficiencies of charge separation, it is the favoured 

choice among these three features (as the cocatalyst type indicator). The effects of CAN in 

comparison with CWF were checked as well.  

 

Alcohol type indicator 

Figure S8 shows the ATI value for each alcohol structure. In Figure S8, the x-axis shows the 

smiles of alcohol, and the y-axis shows the ATI value. There are two advantages of ATI in 

comparison with single alcohol property as a feature, first, ATI gives different values for 

different alcohol and different structures for example AMW is the same for 1-propanol 

(CCCO) and 2-propanol (isopropanol: CCOC) but ATI is not. Second, there is an overall 

trend in ATI which can be used for qualitative analysis. The complete data of PCA analysis 

for ATI was provided with other databases.  

 
Figure S8. ATI values for different organic substances. Smiles were used for the x-axis since 

ATI is sensitive to Smiles.  



Forward Selection 

In this process, different models are trained multiple times starting with one feature and 

adding one feature in every step until the last step which is a model trained with all features. 

In Figure S9a, the results of the forward selection are shown. In Figure S9a, the y-axis shows 

the added feature, and the x-axis shows the R squared of the model on the same test data. The 

first model was trained using AcP, for the second model, CL was added to AcP for training, 

and so on. It is obvious that after adding more features, the model must have a higher R 

squared but this trend is not always incremental. As it is clear in Figure 9a, adding some 

features (e.g., SSA) did not make a significant change in the model metric while adding 

others (e.g., CL) showed distinguished improvement in the model metric. These results can 

tell the effects of adding a feature. Here it could be concluded that adding SSA was not 

necessary from the data-driven point of view while having CL was required.  

 

Figure S9. Share of feature contribution using (a) forward selection and (b) backward 

elimination analysis. This result shows the nonlinear relationships between input features and 

Rate. 

 

Backward Elimination 

This method is against forwarding selection. Here the first model is trained with all features 

and in every step, one feature is eliminated from the input feature set, and the model is 

trained with a new feature set. This process continues until multiple models are trained in a 

way that each of them missed only one feature. In Figure S9b results of backward elimination 

are shown. In this plot, the y-axis shows the name of the feature that was missed in model 

training and the x-axis shows the difference of R squared of the model with all features and 



the model with the missed feature for the same test data. As it is clear in Figure S9b, 

removing AC from the feature set had the highest effect on the model metric and makes it 

less accurate. Removing CWF had a slightly more adverse effect on the model metric in 

comparison with CAN. Moreover, removing SSA did not make a significant change in the 

model metrics.  

It must be noted that forward selection and backward elimination results depend on the model 

performance. However, when the performance of the model is acceptable from a statistical 

point of view (R2 ~ 0.91 on test data), the results of forwarding selection and backward 

elimination under the supervision of expert knowledge are reliable. 

In conclusion, SSA and CAN can be removed. For CAN, it was shown that CWF had enough 

information about the type of cocatalyst for the rate/activity model, and by summing up the 

results of statistical decisions with forward selection and backward elimination the removal 

of CAN can be verified. For SSA, statistical information gave some suggestions to remove it 

but not enough. However, in the forward selection and backward elimination it was shown 

that the removal of SSA cannot make any adverse effects. These were reasons for the data-

driven part. However, from the photocatalyst domain knowledge part, for titania-loaded 

materials, the cocatalyst loading amount has enough information about the surface of the 

material. Therefore, if there are any differences in surface, it is included in the CL. By these 

justifications, removing SSA was reliable from the photocatalyst domain knowledge point of 

view.  

 

Active learning 

As was described in the main manuscript, since a limited database was used, data splitting 

must be done smartly. For this reason, an active learning approach was used. In this 

approach, training started with 10 randomly selected samples, and a model was trained using 

this data. The rest of the data was assumed as the test dataset. A random forest and a 

Gaussian process regression with a combination of radial basis function (RBF) and the 

constant kernel were used as models for active learning. A 5-fold cross-validation approach 

was used to avoid overfitting. For the sake of consistency with the main predictor model, AC, 

ATI, CL, CWF, and AcP were used as the input features and Rate as the target feature. After 

training the first model, it was used to predict the Rate for the rest of the data (test dataset). 

After calculating the error and variance of prediction, a trade-off between exploration and 



exploitation strategies was used to select the next 10 samples to be added to the training 

dataset for the next iteration of the model training. It was shown that the trade-off between 

exploration and exploitation looks better in comparison with only focusing on them 

separately.1 This process continued until covering ~85 percent of data as the training set and 

15 percent as the test set. At the end of the active learning iterative process, 420 samples as 

the training set and 69 samples as the test were selected. These datasets were used to train and 

optimize the main Rate predictor model. Figure S10 shows the results of the active learning 

process. In this figure, the x-axis shows the iteration number in the active learning process 

and the y-axis shows the RMSE of each model on the test set for each iteration. In this figure, 

it is obvious that the model was improved over each iteration, and the data with the most 

information was selected.  

 
Figure S10. Changes in the RMSE of the random forest model during active learning 

iterations. The RMSE show the accuracy of the random forest model. 

 



 

Figure S11. Visualization of the first tree in the random forest model used for the active 

learning process. The sequence of features in the tree shows their contributions on the model 

prediction during active learning iterations. the higher the feature is in the tree, the more 

contribution in the prediction.  

 

It should be noted that in the active learning process, the compatibility of the model with 

domain knowledge must be checked. For this reason, the first tree of the random forest model 

in active learning was visualized to see the relative importance of each feature in decision-

making using trees in Figure S11. As it is clear in this figure, CL is at the top of the tree 

which shows the high importance of this feature in the prediction of Rate. After CL, AcP, and 

CWF. This sequence of features is almost compatible with domain knowledge of the 

photocatalyst reaction and reported literature. It should be noted that the models used for 

active learning were not optimized, and the purpose of those models was not to achieve the 

highest accuracy in the prediction of Rate.  

 

Training main Rate predictor model with TPOT 

So far, the training and test datasets were successfully selected. Since a small database was 

used, ANN was not considered in the model selection. Even with ignoring artificial neural 

networks, many models can be used and each of them has multiple hyperparameters that 

should be tuned. Therefore, choosing the best model with the best and most optimized 

hyperparameters could be a challenging task. To achieve the best-optimized model, TPOT 

was used. As was described in the main manuscript, TPOT searches for the best model with 

optimized hyperparameters using a genetic algorithm. In the TPOT pipeline, 5 generations 



with a population of 100 candidates were used which were repeated 100 time for each 

combination of hyperparameters. To avoid overfitting, 10-times repeated 10-fold cross-

validation was used during the TPOT training process. Details of model parameters were 

shown in Table S2, and details of model error were shown in Table S3. Detailed results of 

Rate prediction with an optimized model were shown in Figure S12. Figure S12a and b 

shows the results for the training dataset and Figure S12c, and d shows the results for the test 

dataset.  

Table S2. Details of model parameters optimized in TPOT 
process. 
Model Parameters 
Random Forest Regressor Number of estimators = 100 

Max_features = 0.75 
Min_samples_leaf = 2 
Min_samples_split =10 
 

RidgeCV Alphas = array ([ 0.1, 1., 10.]) 
 

KNeighborsRegressor N_neighbors = 8 
Weights = distance 
Metric = minkowski 
Leaf size = 30 

 

Detailed error analysis for every cocatalyst showed that all the samples with Pt cocatalyst fell 

into the training dataset which slightly led the model toward accurate predictions for Pt 

cocatalyst within the training dataset. However, for every cocatalyst in the training and test 

dataset, error was normally distributed with a mean close to zero across the whole range of 

HER, for Au, Cu, and Ni in the test dataset, the model tends to slightly underestimate the 

Rate for very low values of Rate and overestimate for higher values of Rate. This skewness 

was affected by the abnormal distribution of values of Rate in the test dataset in which 75% 

of Rates were less than the average of all samples. 



 
Figure S12. Absolute error analysis for (a) cocatalysts in training dataset, (b) cocatalysts in 

test dataset, (c) organic substrates in training dataset, and (d) organic substrates in test 

dataset.  

 

The same analysis for organic substrates showed that a higher portion of samples with 

methanol fell into the training dataset compared to the test dataset which described the lower 

error for those samples in the latter. On the other hand, multiple samples with ethanol fell into 

the test dataset which decreased the number of observations that the model experienced 

during training for ethanol. In addition, in the training dataset for every organic substrate, the 

error was normally distributed with a mean close to zero which indicates there was no bias in 

the prediction error within any single group of cocatalysts and organic substrates. Although, 

for Ethylene glycol and Glycerol organic substrates, the model tends to slightly underestimate 

the Rate for very low values of Rate and overestimate for higher values of Rate. 



 
Figure S13. The effect of (a) CWF and (b) type of organic substrate on average predicted 

hydrogen rate by the model for random generated data 

 

The detailed error analysis indicated that the training strategy and the use of active learning to 

split data into training and test sets in a smart way decreased the adverse effects of the 

imbalanced distribution of data in the initial dataset. However, it was not possible to 

completely overcome issues with the imbalance distribution of data without missing 

information from some experiments, the currently developed model reflects the initial 

distribution of data within its prediction while having a reasonably accurate prediction for 

rare experimental conditions.   

Importance analysis of CWF (Figure S13a) and alcohol type (Figure S13b) is shown that 

an incremental relationship between CWF and the average predicted hydrogen rate is clear. 

Moreover, ATI has a nonlinear impact on the average predicted hydrogen rate.  

 

 

Figure S14. An example of local model interpretation using SHAP analysis for Methanol 

reforming on Pt-TiO2. The red colour of AC shows that the value of the related feature had a 

positive impact on the hydrogen rate and pushed it to a higher value. However, the blue 

colour shows the opposite effect for CL (CWF: cocatalyst work function, AcP: active photon 

flux, CL: cocatalyst loading, AC: alcohol concentration) 

 



Local interpretation using SHAP analysis for a random sample entry showed the 

experimental design of AC and ATI in that sample had negative effects while AcP, CL, and 

CWF had positive effects on the Rate. Moreover, AC contributed higher than other features 

in the prediction whereas CL was the least contributive feature in the value of Rate for that 

specific sample (Figure S14). This analysis provided a qualitative analysis for every sample 

using the developed model. 

Table S3. The top 5 candidates of search space for Cond. 1 Bayesian optimization (2-
Propanol). The first row is the experimentally verified candidate with highest Rate. 

MT AT ML AcP AC Rate 
Pt 2-propanol 1.54×10-2 8.46×1017 0.40 69.91 
Pt 2-propanol 2.23×10-2 3.88×1017 0.47 68.12 
Pt 2-propanol 5.27×10-2 3.76×1017 0.62 62.92 
Pt 2-propanol 3.09×10-2 3.75×1017 0.43 59.34 
Pt 2-propanol 2.37×10-2 4.58×1017 0.58 58.53 

 
Table S4. The top 5 candidates of search space for Cond. 2 Bayesian optimization (Ethylene 
glycol). The first row is the experimentally verified candidate with highest Rate. 

MT AT ML AcP AC Rate 
Pt Ethylene glycol 2.11×10-2 3.46×1017 0.38 75.12 
Pt Ethylene glycol 5.27×10-2 3.76×1017 0.62 64.24 
Pt Ethylene glycol 3.07×10-2 3.74×1017 0.42 59.53 
Pt Ethylene glycol 7.06×10-2 3.78×1017 0.40 58.75 
Pt Ethylene glycol 4.11×10-2 4.32×1017 0.45 56.72 

 

 

Comparing the model accuracy with and model without AcP as input features 

As was stated in the main manuscript, the AcP is essential to be used as an input feature from 

the domain knowledge point of view as well as statistical reasons (better model metrics). 

Here it is shown what happens if one does not use AcP as an input feature in the model. For 

this reason, using the same database, another TPOT-optimized model was trained which 

predicted Rate with CL, CWF, AC, and ATI as input features.  



 
Figure S15. Comparison of samples with different AcP and Rate for (top row) model 

including AcP and (bottom row) model without AcP in input features. The different 

combinations of alcohol and cocatalyst were shown in different columns. Since alcohol 

concentration has a nonlinear effect, different colours were assigned to different AC values. 

A visible sensitivity to the effect of AcP is clear in the model with AcP while there are not 

any differences in the model without AcP.  

 

Since overall metrics such as RMSE cannot tell everything, one needs to see what happens if 

only AcP changes while other features are constant. For this purpose, samples in the database 

which only are different in values of AcP, and Rate were extracted. The hydrogen rate with 

both models (model with AcP and model without AcP in input features) was predicted for 

them. Based on the real data, when everything is constant and only the AcP changes, the 

hydrogen rate also changes in the same direction (the higher AcP, the higher the Rate). By 

plotting these samples in Figure S15, it was shown that the model without AcP cannot see the 

effect of light in predictions. In this figure, every column presents data for one combination 

of alcohol and cocatalyst. The top row is the results of the prediction for the model with AcP 

in input features and the bottom row is for the model without AcP in input features. Every 

plot shows the scatter of model prediction (y-axis) vs AcP (x-axis) and different colours 

represent different values of AC. it is clear that in the top row, the model predictions are 

sensitive to AcP and an overall incremental trend between Rate and AcP can be captured. 

However, in the bottom row, the horizontal trend of model predictions confirms there is no 

sensitivity to AcP. In conclusion, one can say that AcP as an input feature allows to make the 

comparison of results between different literature with different light sources and make the 

model sensitive to light characteristics. 

Figure S16 shows a brief analysis of the model without AcP in input features and its 

compatibility with domain knowledge. Figure S16a shows the SHAP analysis for feature 



importance of the model missing AcP in input features in which the x-axis shows the 

importance value and the y-axis shows the name of the feature. Here CWF is the least 

important feature which is not true, and the type of cocatalyst is Definity more important than 

the type of alcohol.2  Moreover, AC is less important than CL due to the surface effects of 

CL. Therefore, the feature importance of the model without AcP shows less compatibility 

with domain knowledge of photocatalyst reaction and reported literature while in the model 

with AcP in the input features, there was more support for domain knowledge and literature.  

 
Figure S16. (a) Normalized SHAP values of the four most influential features for predicting 

the photocatalytic hydrogen evolution rates in a model without AcP among the input features. 

(b) Trends of predicted hydrogen evolution rates as a function of alcohol concentration (AC) 

in the model without AcP among the input features. The irrational order in the level of 

contribution between different features and the meaningless pattern between AC and 

hydrogen rate is an example of weak fitting of the model which happens in the absence of 

AcP. 

 

Figure S16b also shows the relationship between the concentration of alcohol and the Rate 

for the model without AcP in the input feature. In this plot, the x-axis shows the 

concentration of alcohol, and the y-axis shows the Rate. As it is clear, the pattern that this 

model learned states there is a jump in AC = 0.5 on hydrogen rate, while experimental 

analysis did not confirm this trend. Moreover, this plot says that after AC ~ 0.5, increasing 

alcohol concentration does not have any effect on the Rate, while this trend is not also 

accepted.3  

As a result, using AcP as an input feature can increase the accuracy of the model as well as 

make the model more compatible with experimental observations. This is because of the 



highly important role of AcP and its interactions with other features such as AC and CL. 

Therefore, using AcP in an activity/rate model is highly recommended referring to its positive 

effect on accuracy as well as its role in the physics of the photocatalytic reaction. 

 

Turnover frequency (TOF) of cocatalyst 

TOF is a measure of number of reactions per surface active site. Since the hydrogen evolution 

occurs exclusively on the cocatalyst, it is possible to calculate the TOF if one knows the 

dispersion (D, i.e., ratio of surface to bulk atoms) of the cocatalyst. This is in turn possible to 

deduce from the cocatalyst deposit size (d): 

𝐷 =	
6	𝑉1
𝑆1𝑑

 

 

Eq. S5 

 

where Vm is the atomic volume, while Sm is the surface area per atom. Both parameters can be 

easily calculated from the unit cell dimension of the cocatalyst. In the case of Au cocatalyst 

(lattice parameter, a = 0.4079 nm, face-cubic-centre), the Vm and Sm can be calculated as 

0.01697 nm3 atom-1 and 0.08319 nm2 atom-1, respectively. Likewise, in the case of Pt 

cocatalyst (lattice parameter, a = 0.3912 nm, face-cubic-centre), the Vm and Sm can be 

calculated as 0.01497 nm3 atom-1 and 0.07652 nm2 atom-1, respectively. Figure S17a, b shows 

the particle size distributions of Au and Pt cocatalysts on TiO2,4,5 at different cocatalyst 

loadings prepared by chemical precipitation, the most common deposition method in the 

collected dataset. The data on particle size distributions were best fitted to log-normal 

distribution, from which the mean particle sizes a function of cocatalyst loadings. As shown 

in the insets of Figure S17a, b, continuous trends of mean particle sizes for the cocatalysts 

can be obtained, that can now be readily converted to D for the reported loadings. When 

multiplied by the total cocatalyst loading (in mol) in the reaction system, it is possible to 

calculate the total amount of cocatalyst active sites, Nactive (in mol). 



 
Figure S17. The cocatalyst particle size distributions of chemically-precipitated (a) Au and 

(b) Pt at various loadings, as reported by Idriss and coworkers.4,5 Insets show the mean 

particle size based on the fittings to log-normal distributions. (c,d) The calculated dispersions 

of Au and Pt based on their mean sizes and subsequently the TOF based on the Rates 

predicted by the machine learning model under the conditions: Photocatalyst loadings: 50 

mg, 10 vol.% methanol, and active photon flux 6.32×1016 photon s-1 cm-2. 

 

To calculate the TOF, the predicted Rate can be generated from the machine learning model, 

which we have demonstrated to exhibit unprecedented accuracies (see Figure 5 and 6 in the 

main manuscript). For demonstration purpose, we generated the Rate values for the case Au 

and Pt cocatalysts, but in both cases using the median of AcP and AC from training dataset, 

ATI of methanol, AcP = 6.32×1016 photon s-1 cm-2. The Rates (in µmol h-1 of H2) when then 

divided by Nactive yield the TOF (in the unit of per time) as shown in Figure S17c, d.  
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