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Calculation details

Methane conversion: 

𝐶𝐻4 = 1 ‒  
𝑚𝑜𝑙 𝑜𝑢𝑡

𝐶𝐻4

𝑚𝑜𝑙 𝑖𝑛
𝐶𝐻4

 
100%

Where,  and  are the input and output mole of CH4 (mol), respectively. 
𝑚𝑜𝑙 𝑖𝑛

𝐶𝐻4
𝑚𝑜𝑙 𝑜𝑢𝑡

𝐶𝐻4

Mass balance and product yields: 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =

∑
𝑚𝑎𝑠𝑠

(𝑔𝑎𝑠 + 𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑠𝑜𝑙𝑖𝑑𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛)

∑
𝑚𝑎𝑠𝑠

(𝑔𝑎𝑠 + 𝑙𝑖𝑞𝑢𝑖𝑑 + 𝑠𝑜𝑙𝑖𝑑𝑏𝑒𝑓𝑜𝑟𝑒  𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛)
100%

𝐿𝑖𝑞𝑢𝑖𝑑 𝑌𝑖𝑒𝑙𝑑 (%) =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑒𝑑 𝑙𝑖𝑞𝑢𝑖𝑑 (𝑔)

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐶𝐻4(𝑔) + 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑜𝑖𝑙 (𝑔) 
100%

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑘𝑒 (%) =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑘𝑒

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝐶𝐻4(𝑔) + 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑜𝑖𝑙 (𝑔)
100%

𝐺𝑎𝑠 𝑌𝑖𝑒𝑙𝑑 (%) = 100 ‒ 𝐿𝑖𝑞𝑢𝑖𝑑 𝑦𝑖𝑒𝑙𝑑 (%) ‒ 𝑐𝑜𝑘𝑒 𝑦𝑖𝑒𝑙𝑑 (%)
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Fig.S1. Schematic diagram of triphase plasma catalytic driven pyrolysis oil upgrading to jet fuel.
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Fig.S2. Effects of Ir catalyst loadings on the product yields.
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Fig.S3. Effects of Ir catalyst loadings on the relative distribution of products.
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Table S1. Textural properties of the GaN, fresh and spent Ir/GaN samples.

Catalyst BET Surface Area 
(m² g-1)

Pore Volume 
(cm³g-1)

Pore Size 
(nm)

GaN 8.0 0.031 19.0

Fresh Ir-GaN 14.6 0.052 14.5

Spent Ir-GaN 23.1 0.098 11.8
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Table S2. Molecular weight of feed and upgraded oils.

Oil Molecular weight (g mol-1)

Feed 210.0

Upgraded with Empty tube 181.2

Upgraded with GaN 171.2

Upgraded with Ir/GaN 165.6
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Fig.S4. Containers of feed and upgraded oils produced from different triphase plasma driven 

reactions. [Reactions conditions: Plasma power: 12W; CH4 flowrate of 100 cm3 min-1; oil flowrate: 

0.05 cm3 min-1].
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Fig.S5. Effects of feed oil flowrates on the product yields.
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Fig.S6. Effects of feed oil flowrates on the relative distribution of products.
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Table S3. Comparison of upgrading heavy hydrocarbons to jet fuel range hydrocarbons between thermal catalytic processes and this 

work.

Reaction conditions
Feedstock Catalyst Gas Reactor T

(oC)
P

bar
T

(h)
Wcat 
(g)

Oil yield (%) Remark Ref.

Guaiacol Pd2%/H H2 Batch 220 30 4 0.03 77.66

- At a low reaction 
temperature of 160 °C, 
the predominant 
hydrocarbon product was 
cyclohexane.

- When the H2 pressure was 
set at 5 and 10 bar, the 
conversion of guaiacol 
was merely 2.96% and 
8.04%, respectively. This 
indicates that a high-
pressure environment 
was essential to facilitate 
the generation of active 
hydrogen required for 
breaking the C-O bonds 
in the 
hydrodeoxygenation 
process.

1

α-tetralone Pd-Ni/SBA-
16 H2

Continuous fixed-
bed

down-flow
reactor

400 1 12 0.06 88.21

- The catalytic activity of 
Pd-Ni impregnated on 
various supports, 
including different 
mesoporous materials 
(MCM-41, SBA-15, 
KIT-6) and metal oxides 

2
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(γ-Al2O3, CeO2, TiO2, 
ZrO2, SiO2), was 
compared with that of Pd-
Ni/SBA-16.

- The observed catalytic 
activity exhibited the 
following order: SBA-16 
>KIT-6>SBA-
15>MCM-41>γ-
Al2O3>SiO2> CeO2 
>TiO2>ZrO2. 

- Mesoporous materials 
with high surface area, 
thermal stability, and 
evenly dispersed metals 
displayed higher catalytic 
activity compared to 
metal oxides.

Isoeugenol
Pt (4 wt%)-
Re (4 wt%)/
Sibunit

H2
Batch (thermal 

reactor) 250 30 4 0.05 84.0

-The two primary products 
were 2-methoxy-4-
propylcyclohexanol, 
obtained through the 
hydrogenation of the 
aromatic ring, and 
propylcyclohexane (the 
desired product), 
resulting from both the 
hydrogenation of the 
aromatic ring and 
complete deoxygenation.

-The monometallic Pt 
catalyst exhibited low 
activity. However, the 

3
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incorporation of Re 
(rhenium) to create a bi-
metallic catalyst (Pt-
Re/Sibunit) had a 
significant impact on 
hydrodeoxygenation 
activity. In this case, 
ReOx introduced oxygen 
vacancies crucial for the 
deoxygenation process.

Cyclohexan
one

Sulfided 
CoMo/γ-
Al2O3

N2 
and 
H2 
(50
%−5
0%)

Continuous-fixed-
bed flow reactor 350 8 6 2 n.a

- Elevated pressures 
within the investigated 
range of 8–20 bar were 
found to enhance 
selectivity towards 
deoxygenated products, 
such as benzene and 
cyclohexene.

- Concurrently, an overall 
conversion improvement 
from 7% to 18% was 
observed as the 
temperature increased 
from 300 to 350 °C.

4

Waste 
cooking oil ZnAl2O4 H2 Batch reactor 450 120 1 n/a 80

-  Elevated pressures within 
the investigated range of 
8–20 bar was found to 
enhance selectivity 
towards deoxygenated 
products, such as benzene 
and cyclohexene. 

- Concurrently, an overall 
conversion improvement 

5
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from 7% to 18% was 
observed as the 
temperature increased 
from 300 to 350 °C.

Phenol + 
benzyl 
acetate

5 wt.% 
Pd/C and 
Montmorill
onite

H2
Batch-autoclave 
reactor (MMT) 180 60 10 2.3 75.2

- Benzylphenols were 
synthesized through the 
alkylation of phenol and 
benzyl acetate utilizing 
an MMT catalyst. 
Hydrodeoxygenation of 
the alkylation products 
was performed over a 
Pd/C catalyst to yield 
hydrocarbons within the 
jet fuel range. 

-The primary alkylation 
products were identified 
as 2-benzylphenol and 4-
benzylphenol, achieving 
a 70% yield at 140°C 
with a reaction time of 
2h. 

- Reducing the reaction 
temperature from 220 to 
180 °C led to an increase 
in the yield of 
perhydrofluorene (from 
34.36% to 75.20%). In 
contrast, the yield of 
dicyclohexylmethane 
decreased (from 50.96% 
to 10.42%). This change 
is attributed to the 

6
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saturation of two benzene 
rings in 2-benzylphenol 
and 4-benzylphenol 
through simultaneous 
hydrogenation at the 
higher reaction 
temperature, thereby 
suppressing the 
intramolecular alkylation 
reaction.

Propanal

Cu/SiO2–
TiO2
(upstream 
catalyst)
Ni/ZSM-5 
(downstrea
m
catalyst)

H2

Continuous dual-bed
fixed-bed

reactor
300 10 5 2 n.a

- A dual-bed reactor was 
employed as a strategic 
solution to tackle 
challenges associated 
with the 
hydrodeoxygenation of 
small oxygenates, 
wherein they undergo 
hydrogenation to produce 
light hydrocarbons. The 
dual-bed catalyst 
demonstrated 
significantly higher 
efficacy, resulting in an 
81.7% yield of jet fuel 
range hydrocarbons 
compared to the single-
bed counterpart 
(Cu/SiO2–TiO2) with a 
yield of 12.3%. 

- In the dual-bed setup, 
propanal initially 
engaged with the 

7
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upstream catalyst 
(Cu/SiO2–TiO2), leading 
to enhanced chain 
growth, predominantly 
yielding C9 ketone. 

-This configuration 
effectively curtailed side 
reactions, particularly the 
generation of olefins via 
the direct dehydration of 
propanal, when 
compared to the 
Ni/HZSM-5 catalyst.

Biomass-
derived 
pyrolysis oil 

0.1wt% 
Ir/GaN CH4

Continuous fluidized 
bed reactor 100 1 24 0.1 87.0

- Showcase of an efficient 
H2-free pyrolysis oil 
upgrading process using 
a triphase plasma 
catalytic system.

- Impressive oil yields 
reaching nearly 87%, 
with density and 
viscosity meeting ASTM 
standards.

- Product distribution, 
including alkanes, 
cycloalkanes, and 
aromatics, aligns with 
commercial jet fuel 
requirements.

- Achieved under mild 
operating conditions: 
temperatures around 
100°C and ambient 

This 
work
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pressure.
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Fig.S7. TGA profile of spent GaN and Ir/GaN catalysts.
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Fig. S8. Voltage-Current profile of plasma discharge inside triphase pyrolysis oil upgrading. 
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Fig. S9.  Possible structure and adsorption of CH and H species on the GaN (110) surface.
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Table S4. Adsorption energy diagram for CH4 dissociation on the GaN (110) and Ir (100) under 

plasma regime.

Reaction steps Adsorption energy (eV)

GaN Ir

CH4 -0.23 -0.06

CH4 → CH3 + H -0.41 -0.24

CH4 → CH2 + 2H -0.5 -0.3

CH4  → CH + 3H -0.54 -0.36

CH4 → C+ 4H  -0.64 -0.42
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