Optimization of Pavlova gyrans biomass production and fatty acids

profile using a two-step approach

Filipe Maciel¹, Daniela Couto^{3,4}, Pedro Geada^{1,2*}, Hugo Pereira⁵, José Teixeira^{1,2}, M. Rosário Domingues^{3,4}, Joana Silva⁶, António Vicente^{1,2}

¹CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal

²LABBELS - Associate Laboratory, Guimarães, Braga, Portugal

³Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, 3810-193 Aveiro, Portugal

⁴CESAM - Centre for Environmental and Marine Studies, Department of Chemistry,

University of Aveiro, Santiago University Campus, Aveiro, Portugal

⁵GreenCoLab - Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

⁶ALLMICROALGAE, Natural Products S.A., R&D Department, Rua 25 de Abril 19, 2445-287 Pataias, Portugal

*Corresponding author: Pedro Geada - pedrogeada@ceb.uminho.pt

Supplementary information

ESI Table S1: the twenty-seven experiments combination of the RCCD with the real and coded values (within parentheses) of the independent variables: light intensity (µmol.photons.m⁻².s⁻¹), NaNO₃ (mg.L⁻¹), NaH₂PO₄.H₂O (mg.L⁻¹) and CuSO₄.5H₂O (µg.L⁻¹)

#E	Light intensity (x_3)	$NaNO_3(x_5)$	NaH ₂ PO ₄ .H ₂ O (<i>x</i> ₆)	CuSO ₄ .5H ₂ O (x_{15})
1	350 (-1)	750 (-1)	20 (-1)	5 (-1)
2	650(1)	750 (-1)	20 (-1)	5 (-1)
3	350 (-1)	1250(1)	20 (-1)	5 (-1)
4	650(1)	1250 (1)	20 (-1)	5 (-1)
5	350 (-1)	750 (-1)	40 (1)	5 (-1)
6	650(1)	750 (-1)	40 (1)	5 (-1)
7	350 (-1)	1250 (1)	40 (1)	5 (-1)
8	650(1)	1250 (1)	40 (1)	5 (-1)
9	350 (-1)	750 (-1)	20 (-1)	15 (1)
10	650 (1)	750 (-1)	20 (-1)	15 (1)
11	350 (-1)	1250 (1)	20 (-1)	15 (1)
12	650(1)	1250 (1)	20 (-1)	15 (1)
13	350 (-1)	750 (-1)	40 (1)	15 (1)
14	650 (1)	750 (-1)	40 (1)	15 (1)
15	350 (-1)	1250 (1)	40 (1)	15 (1)
16	650 (1)	1250 (1)	40 (1)	15 (1)
17	200 (-2)	1000 (0)	30 (0)	10 (0)
18	800 (2)	1000 (0)	30 (0)	10 (0)
19	500 (0)	500 (-2)	30 (0)	10 (0)
20	500 (0)	1500 (2)	30 (0)	10 (0)
21	500 (0)	1000 (0)	10 (-2)	10 (0)
22	500 (0)	1000 (0)	50 (2)	10 (0)
23	500 (0)	1000 (0)	30 (0)	0 (-2)
24	500 (0)	1000 (0)	30 (0)	20 (2)
25	500 (0)	1000 (0)	30 (0)	10 (0)
26	500 (0)	1000 (0)	30 (0)	10 (0)
27	500 (0)	1000 (0)	30 (0)	10 (0)

ESI Table S2: combination of growth conditions used in the validation experiments: optimized conditions, Opt, control/Walne's medium, Con, medium without vitamins, Vit-, and assay with the non-significant variables of the PB design defined at Level -1, Lvl-1

Variable	Opt	Lvl-1	Vit-	Con
Light intensity (µmol.photons.m ⁻² .s ⁻¹)	700	700	700	700
$NaNO_3$ (mg.L ⁻¹)	1500	1500	1500	100
CuSO4.5H2O (µg.L ⁻¹)	6	6	6	20 (0)
$\underline{\text{NaH}_{2}\text{PO}_{4}\text{.}\text{H}_{2}\text{O}(\text{mg.L}^{-1})}$	40	40	40	20 (0)
Na ₂ H ₂ EDTA.2H ₂ O (mg.L ⁻¹)	45 (0)	22.5 (-1)	45 (0)	45 (0)
$H_3BO_3 (mg.L^{-1})$	33.6 (0)	16.8 (-1)	33.6 (0)	33.6 (0)
FeCl ₃ .6H ₂ O (mg.L ⁻¹)	1.3 (0)	0.65 (-1)	1.3 (0)	1.3 (0)
MnCl ₂ .4H ₂ O (µg.L ⁻¹)	360 (0)	180 (-1)	360 (0)	360 (0)
$ZnCl_2(\mu g.L^{-1})$	21 (0)	10.25 (-1)	21 (0)	21 (0)
CoCl ₂ .6H ₂ O (µg.L- ¹)	20 (0)	10 (-1)	20 (0)	20 (0)
$(NH_4)_6Mo_7O_{24}.4H_2O~(\mu g.L^{-1})$	9 (0)	4.5 (-1)	9 (0)	9 (0)
Thiamine (μ g.L ⁻¹)	100 (0)	50 (-1)	-	100 (0)
Cyanocobalamin (µg.L ⁻¹)	5 (0)	2.5 (-1)	-	5 (0)
NaHCO ₃ (mg.L ⁻¹)	170 (-1)	170 (-1)	170 (-1)	-
Salinity (psu)	30 (0)	20 (-1)	30 (0)	30 (0)
Air flow (mL.min ⁻¹)	600 (-1)	600 (-1)	600 (-1)	600 (-1)
Inoculum size (g AFDW.L ⁻¹)	0.1 (-1)	0.1 (-1)	0.1 (-1)	0.1 (-1)

ESI Table S3: values of maximum biomass produced (X_{max} , g AFDW.L⁻¹) and volumetric biomass productivity (P_X , g AFDW.L⁻¹.d⁻¹) at the beginning of the stationary phase (t_x , days) for the *P. gyrans* grown in the validation assays: optimized conditions, Opt, control/Walne's medium, Con, medium without vitamins, Vit-, and assay with the variables considered non-significant in PB design fixed at Level -1, Lvl-1. Values are the mean and standard deviation of three replicates (n=3). Different letters indicate significant differences between the validation assays (one-way ANOVA, p < 0.05, followed by the Tukey's test). Gain was calculated as the ratio of $X_{max}/X_{max.control}$

	$t_x(\mathbf{d})$	P_x	X _{max}	Gain
Con	4	0.148 ± 0.003^A	0.59 ± 0.01^{a}	1.0
Lvl-1	4	0.229 ± 0.013^B	0.92 ± 0.05^{b}	1.5
Vit-	4	0.153 ± 0.001^A	0.61 ± 0.01^{a}	1.0
Opt	10	0.225 ± 0.005^B	2.26 ± 0.05^{c}	3.8

ESI Table S4: experimental and predicted values, as well as the relative errors (% RE = 100 x (Exp-Pred)/Exp), for the responses maximum biomass produced (Xmax, g AFDW.L⁻¹), protein content ($\% \text{ w.w}^{-1}$), total lipids ($\% \text{ w.w}^{-1}$), eicosapentaenoic acid (EPA, %TFA) and docosahexaenoic acid (DHA, %TFA), achieved under the optimal conditions defined for validation of the mathematical models produced

Response	Experimental	Predicted	%RE
X _{max}	2.26 ± 0.05	2.34	-3.69
Protein content	30.76 ± 4.37	30.58	0.60
Total lipids	28.30 ± 0.95	22.05	22.10
EPA	20.69 ± 1.61	7.37	64.39
DHA	10.33 ± 0.30	1.80	82.54

ESI Figure S1: Contour curves from RCCD for the dependent variable total lipids (% w.w⁻¹), a-f), illustrating the interactions between CuSO_{4.5}H₂O and NaH₂PO₄.H₂O, (a), CuSO_{4.5}H₂O and NaNO₃, (b), CuSO_{4.5}H₂O and light intensity, (c), NaH₂PO₄.H₂O and NaNO₃, (d), NaH₂PO₄.H₂O and light intensity, (e), and NaNO₃ and light intensity, (f). Contour curves for protein content (% w.w⁻¹), g-m), illustrating the interactions between CuSO_{4.5}H₂O and NaH₂PO₄.H₂O, (g), CuSO_{4.5}H₂O and NaNO₃, (h), NaH₂PO₄.H₂O and NaNO₃, (i), CuSO_{4.5}H₂O and light intensity, (j), NaH₂PO₄.H₂O and NaNO₃, (i), NaH₂PO₄.H₂O and light intensity, (j), NaH₂PO₄.H₂O and light intensity, l), NaNO₃ and light intensity, m)

ESI Figure S2: Contour curves from RCCD for the dependent variable EPA %TFA, a-c), illustrating the interactions between CuSO_{4.}5H₂O and NaH₂PO₄.H₂O, a), CuSO_{4.}5H₂O and light intensity, b), and NaH₂PO₄.H₂O and light intensity, c). Contour curves for DHA %TFA, d-i), illustrating the interactions between NaH₂PO₄.H₂O and light intensity, d), CuSO₄.5H₂O and light intensity, e), NaNO₃ and light intensity, f), CuSO₄.5H₂O and NaH₂PO₄.H₂O, h), and NaH₂PO₄.H₂O and NaNO₃, i)