Electronic Supplementary Material (ESI) for Sustainable Food Technology. This journal is © The Royal Society of Chemistry 2024

Supplementary Materials

Table: Commercially Available Film

Polysaccharid e film	Source	Commercial Organizatio n	Quality Parameter	Applications	Ref
Chitosan Film	Shrimp and Crab Shells	BioPack (US)	Biodegradable Antimicrobial Transparent Breathable	Fresh produce packaging Meat packaging Wound dressings	1
Whey Protein	Whey protein is a byproduct of cheese production.	Bluelab Whey, Foodstrong (US)	Good gas barrier properties, film-forming tendency.	Food packaging, especially for perishable products.	2
Carboxymethyl Cellulose	Derived from cellulose, often from wood pulp.	Celsol, Nouryon	Water solubility, film flexibility, and mechanical strength.	Edible packaging, encapsulation of bioactive compounds.	3
Gum Arabic	Extracted from the Acacia tree.	Iscgums, Agrigum	Excellent emulsifying properties, stability in aqueous solutions.	Encapsulation , flavor masking, and film-forming agent.	3
Octenyl Succinic Anhydride Starch	Modified starch obtained from various sources (e.g., corn, potato).	Cleargum Cargill (US)	Improved water resistance, film flexibility.	Coating for fruits, vegetables, and bakery products.	3
Water-Soluble Soy Polysaccharide s	Derived from soybeans.	ALFA Chemistry	Good film- forming ability, biodegradability.	Edible coatings for fruits, vegetables, and meats.	3
Xylan Film	Hemicellulose from various plants	XYLAB (France)	Biodegradable Good oxygen barrier Can be blended for specific properties	Food packaging Mulch films Agricultural applications	4
Curdlan Film	Alcaligenes faecalis	Nagase ChemTex	Water-insoluble Heat-resistant	Heat-resistant food	5

	bacteria	(Japan)	Good oil barrier	packaging Oil and fat containers Industrial applications	
Gellan Gum Film	Sphingomona s paucimobilis bacteria	Kelcogel (US)	Thermoreversibl e gelling properties Film- forming ability Adjustable texture	Controlled- release capsules Food texturizing agent Edible coatings	6

References:

- 1 C. De Carli, V. Aylanc, K. M. Mouffok, A. Santamaria-Echart, F. Barreiro, A. Tomás, C. Pereira, P. Rodrigues, M. Vilas-Boas and S. I. Falcão, *Int J Biol Macromol*, 2022, **213**, 486–497.
- L. Kumar, D. Ramakanth, K. Akhila and K. K. Gaikwad, *Environ Chem Lett*, 2022, **20**, 875–900.
- 3 K. Łupina, D. Kowalczyk and W. Kazimierczak, *Polymers (Basel)*, 2022, **14**, 4001.
- J. Madine, E. Jack, P. G. Stockley, S. E. Radford, L. C. Serpell and D. A. Middleton, J Am Chem Soc, 2008, 130, 14990–15001.
- N. Aquinas, R. Bhat M and S. Selvaraj, *Polymer Bulletin*, 2022, **79**, 6905–6927.
- 6 C. de Lima Barizão, M. I. Crepaldi, O. de O. S. Junior, A. C. de Oliveira, A. F. Martins, P. S. Garcia and E. G. Bonafé, *Int J Biol Macromol*, 2020, **165**, 582–590.