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S1 Derivation of the Frequency Response Functions

The general procedure for the derivation of the frequency response functions is straightforward 
and well-explained in literature, for example [1,2,3]. It consists of seven steps, and here it is 
exemplified for the reaction system studied in this contribution.

Step 1. Definition of basic kinetic and mass transport equations and dynamic material and charge 
balances

The charge balance at the electrode surface where two parallel reactions take place (hydrogen 
evolution reaction (HER) and carbon dioxide reduction reaction (CO2RR)) is defined as:

𝐶𝑑𝑙
𝑑𝐸(𝑡)

𝑑𝑡
= 𝑖(𝑡) ‒ (𝑖𝑓,𝐻2

(𝑡) + 𝑖𝑓,𝐶𝑂(𝑡)) (Eq.S1)

where  is the double layer capacity (F m-2),  electrode potential (V),  time (s),  current 𝐶𝑑𝑙 𝐸(𝑡) 𝑡 𝑖(𝑡)

density (A m-2),  is partial current density (A m-2), and  stands for HER and CO2RR, 𝑖𝑓,𝑖(𝑡) 𝑖 = 𝐻2,𝐶𝑂

respectively.

Tafel expressions are used to describe the kinetics of both reactions:

𝑖𝑓,𝐻2
(𝑡) =‒ 𝑖0,𝐻2

𝑒𝑥𝑝( ‒ 𝛼𝐻2
𝑓𝐸(𝑡)) (Eq.S2)

𝑖𝑓,𝐶𝑂(𝑡) =‒ 𝑖0,𝐶𝑂𝑒𝑥𝑝( ‒ 𝛼𝐶𝑂𝑓𝐸(𝑡)) (Eq.S3)

where  is the exchange current density of reaction  (A cm-2),  the charge transfer coefficient 𝑖0,𝑖 𝑖 𝛼𝑖

of reaction , and , with  being Faraday’s constant (C mol-1),  the universal gas constant 𝑖
𝑓 =

𝐹
𝑅𝑇 𝐹 𝑅

(J mol-1 K-1), and  temperature (K).𝑇

In the next step input and output variables are defined. Only the derivation of frequency response 
functions (FRFs) with the potential as an input is shown. Procedure for current as a modulated 
input is analogous.

Step 2. Definition of input and output variables
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The input is defined as a cosine wave:

∆𝐸(𝑡) = (𝐸(𝑡) ‒ 𝐸𝑠𝑠) = 𝐴cos (𝜔𝑡) =  
𝐴
2

(𝑒𝑗𝜔 ∙ 𝑡 + 𝑒 ‒ 𝑗𝜔 ∙ 𝑡) (Eq.S4)

where  is the input amplitude (V),  is the steady-state potential (V) value,  is the imaginary 𝐴 𝐸𝑠𝑠 𝑗
unit, and  is the frequency (rad s-1).𝜔

The output signal, cell current density, is defined as:

 
Δ𝑖(𝑡) = (𝑖(𝑡) ‒ 𝑖𝑠𝑠) = (𝐴

2){𝐺1(𝜔)𝑒𝑗𝜔 ∙ 𝑡 + 𝐺1( ‒ 𝜔)𝑒 ‒ 𝑗𝜔 ∙ 𝑡} +

(𝐴
2)2{𝐺2(𝜔,𝜔)𝑒𝑗 ∙ 2𝜔 ∙ 𝑡 + 2 ∙ 𝐺2(𝜔, ‒ 𝜔)𝑒0 + 𝐺2( ‒ 𝜔, ‒ 𝜔)𝑒 ‒ 𝑗 ∙ 2𝜔 ∙ 𝑡} + …

(Eq.S5)

where  is the steady-state current density (A m-2),  is the 1st-order FRF,  𝑖𝑠𝑠 𝐺1(𝜔) 𝐺2(𝜔,𝜔)

symmetrical 2nd-order FRF, and  is the asymmetrical 2nd-order FRF.𝐺2(𝜔, ‒ 𝜔)

Step 3. Taylor approximation of the nonlinear terms of the model around the steady state

The only nonlinear terms of the model defined in the Step 1 are the kinetic terms (Eq. S2 ans S3). 
The Taylor approximation of these terms up to the 2nd order is:

∆𝑖𝑓,𝑖(𝑡) = 𝑖𝑓,𝑖(𝑡) ‒ 𝑖𝑓,𝑖,𝑠𝑠 = 𝐾𝑖,1∆𝐸(𝑡) + 𝐾𝑖,2
∆𝐸(𝑡)2

2
(Eq.S6)

where  represents the steady-state value of the partial current. The constants  and 𝑖𝑓,𝑖,𝑠𝑠 𝐾𝑖,1

 are defined as:𝐾𝑖,2, 𝑖 = 𝐻2,𝐶𝑂

𝐾𝑖,1 =
∂𝑖𝑓,𝑖

∂𝐸
= 𝑖0,𝑖𝛼𝑖𝑓𝑒𝑥𝑝( ‒ 𝛼𝑖𝑓𝐸𝑠𝑠) (Eq.S7)

𝐾𝑖,2 =
∂2𝑖𝑓,𝑖

∂𝐸2
= ‒ 𝑖0,𝑖𝛼

2
𝑖𝑓2𝑒𝑥𝑝( ‒ 𝛼𝑖𝑓𝐸𝑠𝑠)

(Eq.S8)

Step 4. Substituting the Taylor polynomial into the mathematical model defined in Step 1

Eq.S6 is substituted in Eq.S1:

𝐶𝑑𝑙
𝑑𝐸(𝑡)

𝑑𝑡
= 𝑖(𝑡) ‒ (𝐾𝐻2,1∆𝐸(𝑡) + 𝐾𝐻2,2

∆𝐸(𝑡)2

2
+ 𝐾𝐶𝑂,1∆𝐸(𝑡) + 𝐾𝐶𝑂,2

∆𝐸(𝑡)2

2 ) (Eq.S9)

Step 5. Substituting the input and outputs into the equations obtained in Step 4.

Eq.S4 and S5 are substituted in Eq.S9. The following equation is obtained:

 
𝐶𝑑𝑙

𝐴
2

(𝑗𝜔𝑒𝑗𝜔 ∙ 𝑡 ‒ 𝑗𝜔𝑒 ‒ 𝑗𝜔 ∙ 𝑡) = (𝐴
2){𝐺1(𝜔)𝑒𝑗𝜔 ∙ 𝑡 + 𝐺1( ‒ 𝜔)𝑒 ‒ 𝑗𝜔 ∙ 𝑡} + (Eq.S10)



(𝐴
2)2{𝐺2(𝜔,𝜔)𝑒𝑗 ∙ 2𝜔 ∙ 𝑡 + 2 ∙ 𝐺2(𝜔, ‒ 𝜔)𝑒0 + 𝐺2( ‒ 𝜔, ‒ 𝜔)𝑒 ‒ 𝑗 ∙ 2𝜔 ∙ 𝑡}

‒ {𝐾𝐻2,1
𝐴
2

(𝑒𝑗𝜔 ∙ 𝑡 + 𝑒 ‒ 𝑗𝜔 ∙ 𝑡) +
𝐾𝐻2,2

2 (𝐴
2)2(𝑒2𝑗𝜔 ∙ 𝑡 + 2𝑒0 + 𝑒 ‒ 𝑗2𝜔 ∙ 𝑡) + 𝐾𝐶𝑂,1

𝐴
2

(𝑒𝑗𝜔 ∙ 𝑡 + 𝑒 ‒ 𝑗𝜔 ∙ 𝑡) +
𝐾𝐶𝑂,2

2 (𝐴
2)2(𝑒2𝑗𝜔 ∙ 𝑡 + 2𝑒0 + 𝑒 ‒ 𝑗2𝜔 ∙ 𝑡)}

+ ….

Step 6. Applying harmonic probing

Harmonic probing is done by collecting all the terms of the same frequencies from equation 
Eq.S10. The terms of frequency  result in equation:𝜔

𝐶𝑑𝑙
𝐴
2

𝑗𝜔𝑒𝑗𝜔 ∙ 𝑡 = (𝐴
2)𝐺1(𝜔)𝑒𝑗𝜔 ∙ 𝑡 ‒ {𝐾𝐻2,1

𝐴
2

𝑒𝑗𝜔 ∙ 𝑡 + 𝐾𝐶𝑂,1
𝐴
2

𝑒𝑗𝜔 ∙ 𝑡} (Eq.S11)

Then, by collecting the terms with frequencies and , one obtains:2𝜔 0

0 = (𝐴
2)2𝐺2(𝜔,𝜔)𝑒𝑗 ∙ 2𝜔 ∙ 𝑡 ‒ {𝐾𝐻2,2

2 (𝐴
2)2𝑒2𝑗𝜔 ∙ 𝑡 +

𝐾𝐶𝑂,2

2 (𝐴
2)2𝑒2𝑗𝜔 ∙ 𝑡} (Eq.S12)

0 = (𝐴
2)2 ∙ 2 ∙ 𝐺2(𝜔, ‒ 𝜔)𝑒0 ‒ {𝐾𝐻2,2

2 (𝐴
2)2 ∙ 2𝑒0 +

𝐾𝐶𝑂,2

2 (𝐴
2)2 ∙ 2𝑒0} (Eq.S13)

Step 7. Solving the equations derived in Step 6

By solving equations S11-S13, the analytical expressions for FRFs are obtained:

𝐺1(𝜔 ) = 𝐶𝑑𝑙𝑗𝜔 + (𝐾𝐻2,1 + 𝐾𝐶𝑂,1) (Eq.S14)

𝐺2(𝜔,𝜔 ) =
𝐾𝐻2,2 + 𝐾𝐶𝑂,2

2
(Eq.S15)

𝐺2(𝜔, ‒ 𝜔 ) =
𝐾𝐻2,2 + 𝐾𝐶𝑂,2

2
(Eq.S16)

Similarly, the partial currents can be defined as auxiliary outputs:

𝑖𝑓,𝑖(𝑡)

= 𝑖𝑓,𝑖, 𝑠𝑠 + (𝐴
2){𝐺1,𝑖(𝜔)𝑒𝑗𝜔 ∙ 𝑡 + 𝐺1,𝑖( ‒ 𝜔)𝑒 ‒ 𝑗𝜔 ∙ 𝑡} + (𝐴

2)2{𝐺2,𝑖(𝜔,𝜔)𝑒𝑗 ∙ 2𝜔 ∙ 𝑡 + 2 ∙ 𝐺2,𝑖(𝜔, ‒ 𝜔)𝑒0 + 𝐺2,𝑖( ‒ 𝜔, ‒ 𝜔)𝑒 ‒ 𝑗 ∙ 2𝜔 ∙ 𝑡}
+ …

(Eq.S17)

By repeating Steps 3-7, the FRFs for partial currents are calculated as:

𝐺1,𝑖(𝜔 ) = 𝐾𝑖,1 (Eq.S18)

𝐺2,𝑖(𝜔,𝜔 ) =
𝐾𝑖,2

2
(Eq.S19)

𝐺2,𝑖(𝜔, ‒ 𝜔 ) =
𝐾𝑖,2

2
(Eq.S20)



S2 Analysis of the dynamic CO FE with current as a periodic input

In case of the current as a periodic input, the dynamic CO FE is different than the steady-state 
one:

𝐹𝐸𝐶𝑂,𝑑𝑦𝑛 = 𝐹𝐸𝐶𝑂,𝑠𝑠 +
2

𝑖𝑠𝑠
(𝐴

2)2𝐺2,𝐶𝑂(𝜔, ‒ 𝜔) (Eq.S21)

where  is the asymmetrical 2nd-order FRF for partial current of CO defined as:𝐺2,𝐶𝑂(𝜔, ‒ 𝜔)

𝐺2,𝐶𝑂(𝜔, ‒ 𝜔) =
(𝐾𝐻2,1𝐾𝐶𝑂,2 ‒ 𝐾𝐶𝑂,1𝐾𝐻2,2)

(𝐾𝐻2,1 + 𝐾𝐶𝑂,1)(𝐶 2
𝑑𝑙𝜔

2 + (𝐾𝐻2,1 + 𝐾𝐶𝑂,1)2) (Eq.S22)

Having in mind that  is always negative (reduction current is negative based on the convention), 𝑖𝑠𝑠

the asymmetrical 2nd-order CO FRF (Eq.S22) has to be negative in order for the dynamic CO FE 
to be higher than the steady-state one. Based on the definition, coefficients  are always 𝐾𝑖,1

positive, meaning that the denominator of Eq.S22 will also always be positive. Thus, the 
assymetrical 2nd-order FRF will be negative if the inequality in Eq.S23 is satisfied.

𝐾𝐻2,1𝐾𝐶𝑂,2 ‒ 𝐾𝐶𝑂,1𝐾𝐻2,2 < 0 (Eq.S23)

From Eqs. S7 and S8, it follows:

𝐾𝑖,2 =‒ 𝛼𝑖𝑓𝐾𝑖,1 (Eq.S24)

By substituting Eq.S24 in the Eq.S23 and rearanging, one obtaines:

𝐾𝐻2,1𝐾𝐶𝑂,1𝑓(𝛼𝐻2
‒ 𝛼𝐶𝑂) < 0 (Eq.S25)

Considering that the coefficients in Eq.S25 are always positive, the values of the charge transfer 
coefficients of the two parallel reactions determines the sign of the asymmetrical 2nd-order FRF. 

Thus,  to achieve an increase of the CO FE under the dynamic operation compared to the steady 
state, the charge transfer coefficient of CO2RR should be greater than the one of HER.
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