SUPPORTING INFORMATION

A systematic mechanistic survey on the reactions between OH radical and CH₃OH on ice

W. M. C. Sameera,^{*a,b} Avon P. Jayaweera,^b Atsuki Ishibashi,^a Hiroshi Hidaka^a and Yasuhiro Oba, Naoki Watanabe^a

^aInstitute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido 060-0819, Japan. ^bDepartment of Chemistry, University of Colombo, Colombo 00300, Sri Lanka.

E-mail: wmcsameera@lowtem.hokudai.ac.jp

Table S1 Computed binding energies (eV).	3
Table S2 Computed binding energies from ω B97X-D/Def2-TZVP and ONIOM(ω B9 D/Def2-TZVP:AMOEBA09) methods.	7X- 3
Figure S1 Optimized structures of CH ₂ OH radical on ice	4
Figure S2 Optimized structures of CH ₃ OH molecule on ice	5
Figure S3 Optimized transition state structures of $CH_3OH + OH \rightarrow CH_2OH + H_2O$	6
Figure S4 Optimized transition state structures of $CH_3OH + OH \rightarrow CH_3O + H_2O$	7
Table S3 Computed energies of the optimized structures.	7
Table S4. Computed energies of LMs and TSs of the reaction paths	9

	CH ₂ OH	CH₃OH
А	0.64	0.36
В	0.58	0.37
С	0.53	0.47
D	0.34	0.72
Е	0.69	0.30
F	0.29	0.35
G	0.69	0.52
Н	0.58	0.15
I	0.37	0.42
J	0.38	0.28
K	0.58	0.38
L	0.59	0.6
Μ	0.59	0.62
Ν	0.29	0.32
0	0.35	0.17
Р	0.37	0.38

Table S1 Computed binding energies (eV).

Table S2. Computed binding energies (eV, without ZPE) from and ω B97X-D/Def2-TZVP and ONIOM(ω B97X-D/Def2-TZVP:AMOEBA09) methods. Binding energies are
shown in ascending order.

CH₂OH binding energy	QM	ONIOM (QM:MM)	Discrepancy	CH ₃ OH binding energy	QM	ONIOM (QM:MM)	Discrepancy
Ν	0.30	0.25	0.05	н	0.16	0.18	-0.02
J	0.35	0.37	-0.02	J	0.30	0.34	-0.04
D	0.36	0.38	-0.02	N	0.31	0.37	-0.06
F	0.38	0.41	-0.03	Е	0.32	0.38	-0.06
0	0.46	0.42	0.04	В	0.43	0.43	0.00
I	0.47	0.46	0.01	А	0.44	0.44	0.00
М	0.47	0.46	0.01	F	0.46	0.44	0.02
Р	0.49	0.47	0.02	0	0.50	0.46	0.04
С	0.61	0.61	0.00	К	0.51	0.48	0.03
В	0.64	0.66	-0.02	Р	0.51	0.48	0.03

к	0.65	0.67	-0.02	I	0.52	0.52	0.00
L	0.65	0.69	-0.04	М	0.58	0.59	-0.01
Н	0.67	0.70	-0.03	С	0.64	0.61	0.03
А	0.84	0.77	0.07	G	0.67	0.66	0.01
G	0.85	0.80	0.05	L	0.70	0.69	0.01
E	0.87	0.81	0.06	D	0.87	0.89	-0.02

 CH_3OH molecule and a few water molecules in the binding site are shown.

Figure S3. Optimized transition state structures of $CH_3OH + OH \rightarrow CH_2OH + H_2O$. For simplicity, only the CH_3OH ---OH unit and a few water molecules in the binding site are shown.

Figure S4 Optimized transition state structures of $CH_3OH + OH \rightarrow CH_3O + H_2O$. For simplicity, only the CH_3OH ---OH unit and a few water molecules in the binding site are shown.

CH₂OH-ice complex	Zero-point energy/AU	Potential energy/AU
A	1.34154	-3786.89542
В	1.34112	-3786.89307
С	1.34031	-3786.88591

Table S3 Computed energie	s of the optimized structures.
---------------------------	--------------------------------

D	1.33971	-3786.87608
E	1.30047	-3671.79168
F	1.23026	-3480.93792
G	1.23484	-3480.97995
Н	1.22950	-3480.94311
I	1.35876	-3862.92004
J	1.35916	-3862.92070
К	1.35872	-3862.92776
L	1.35858	-3862.92798
М	1.35858	-3862.92798
N	1.35745	-3862.91255
0	1.35787	-3862.91845
Р	1.35917	-3862.92049
CH₃OH-ice complex	Zero-point energy/AU	Potential energy/AU
A	1.35440	-3787.54773
В	1.35347	-3787.54689
С	1.35439	-3787.54705
D	1.35778	-3787.55976
E	1.35324	-3787.53790
F	1.24446	-3481.60389
G	1.24771	-3481.64782
Н	1.24559	-3481.62022
Ι	1.37349	-3863.58592
J	1.37200	-3863.57937
K	1.37357	-3863.58464
L	1.37326	-3863.59248
М	1.37281	-3863.59271
N	1.37164	-3863.58068
0	1.37099	-3863.57425
Р	1.37219	-3863.58313

CH ₃ OH + OH → CH ₂ OH + H ₂ O	Zero-point energy/AU	Potential energy/AU
R1	0.91897	-4778.64615
TS1	0.91755	-4778.64324
P1	0.92118	-4778.68839
R2	0.92231	-4778.64948155
TS2	0.92041	-4778.64359539
P2	0.92285	-4778.68294891
R2	0.92194	-4778.64948
TS2	0.91743	-4778.64359
P2	0.92216	-4778.68294
R4	0.92048	-4778.65103
TS4	0.91706	-4778.64319
P4	0.92048	-4778.68478
CH ₃ OH + OH → CH ₃ O + H ₂ O		
R1'	0.92114	-4778.64830
TS1'	0.91582	-4778.64181
P1'	0.91967	-4778.67809

Table S4. Computed energies of LMs and TSs of the reaction paths.

R2'	0.92143	-4778.64601
TS2'	0.91667	-4778.63734
P2'	0.92069	-4778.67300
R3'	0.92009	-4778.65464
TS3'	0.91471	-4778.63716
P3'	0.91918	-4778.67008
R4'	0.92111	-4778.65623
TS4'	0.92040	-4778.63944
P4'	0.92020	-4778.67481