Electronic Supplementary Material (ESI) for Faraday Discussions. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Case	P-T profile	P _b /bar	Star	Boundary Condition	C ₂ H ₂	C ₂ H ₆	HCN	HC ₃ N	CH ₃ OH
1	PT1	100	old	zero flux	3.0E-06	7.5E-05	1.2E-07	9.0E-07	4.3E-06
2	PT2	100	old	zero flux	6.5E-06	1.3E-03	3.4E-07	2.1E-05	9.9E-05
3	PT3	100	old	zero flux	1.6E-05	8.6E-03	4.1E-06	1.3E-04	3.7E-04
4	PT1	1	old	zero flux	3.1E-17	5.9E-11	9.3E-07	3.2E-14	1.2E-08
5	PT3	1	old	zero flux	1.7E-12	8.5E-07	5.5E-08	4.1E-10	2.5E-07
6	PT4	1	old	zero flux	1.3E-06	1.3E-06	2.5E-06	6.7E-07	7.3E-16
7	PT1	100	young	fixed H ₂ O, CH ₄ , NH ₃	2.8E-07	2.2E-04	3.0E-05	5.8E-05	2.5E-09
8	PT4	1	young	fixed H_2O , CH_4 , NH_3	5.8E-03	6.8E-04	2.1E-05	6.7E-07	2.9E-19
9	PT1	100	old	fixed N ₂ , H ₂ O; $CO_2 = 1.4E-02$	6.0E-17	1.31E-08	8.4E-09	5.7E-13	4.3E-11
10	PT1	100	old	fixed N ₂ , H ₂ O; $CO_2 = 1.0E-06$	6.2E-21	1.2E-11	2.6E-10	6.3E-18	2.9E-15
11	PT4	1	old	fixed N ₂ , H ₂ O; $CO_2 = 1.0E-01$	9.1E-13	1.7E-10	2.0E-12	5.0E-13	2.4E-09

Table S1 Model assumptions and volume mixing ratios at 1 mbar of prominent molecules for Hycean cases explored with the photochemical calculations in this work (see sections 2.2 and 3.2). The initial metallicity is assumed to be $100 \times$ solar. P_b is the pressure at the lower boundary. The boundary conditions are those considered at the lower boundary of the atmosphere. The first six cases consider zero-flux boundary conditions, i.e. an unreactive surface, whereas the last five cases consider boundary conditions as discussed in sections 2.2 and 3.2. Cases 7 and 10 compute chemistry at an age of \sim 30 Myr in the early evolution of the planet starting with reduced boundary conditions corresponding to an initial equilibrium composition for $100 \times$ solar metallicity. The last five columns show the volume mixing ratios at 1 mbar of prominent CNO molecules (C₂H₂, C₂H₆, HCN, HC₃N and CH₃OH) expected in H₂-rich atmospheres.

Case	P-T profile	<i>P</i> _b /bar	Star	Boundary Condition	H ₂ O	CH ₄	NH ₃	CO ₂	CO
1	PT1	100	old	zero flux	2.4E-02	1.1E-02	4.2E-05	1.3E-02	7.5E-06
2	PT2	100	old	zero flux	1.0E-02	6.7E-03	1.5E-04	4.5E-03	5.1E-05
3	PT3	100	old	zero flux	2.8E-03	2.5E-03	3.3E-04	3.5E-04	2.5E-04
4	PT1	1	old	zero flux	2.4E-02	6.8E-06	3.4E-09	4.1E-02	1.9E-03
5	PT3	1	old	zero flux	2.3E-02	8.2E-05	1.0E-11	4.3E-02	9.3E-04
6	PT4	1	old	zero flux	4.8E-08	7.8E-05	2.2E-07	9.4E-15	3.0E-09
7	PT1	100	young	fixed H ₂ O, CH ₄ , NH ₃	2.5E-02	5.0E-02	1.5E-02	4.0E-05	2.3E-05
8	PT4	1	young	fixed H_2O , CH_4 , NH_3	4.7E-08	4.9E-02	1.4E-02	1.8E-19	2.4E-10
9	PT1	100	old	fixed N ₂ , H ₂ O; $CO_2 = 1.4E-02$	2.4E-02	1.2E-04	3.7E-10	1.3E-02	2.2E-06
10	PT1	100	old	fixed N ₂ , H ₂ O; $CO_2 = 1.0E-06$	2.4E-02	3.6E-06	6.2E-10	1.0E-06	1.3E-08
11	PT4	1	old	fixed N ₂ , H ₂ O; $CO_2 = 1.0E-01$	4.7E-08	5.6E-08	4.8E-14	1.0E-01	6.4E-03

Table S2 Model assumptions and volume mixing ratios at 10 mbar of prominent molecules for Hycean cases explored with the photochemical calculations in this work (see sections 2.2 and 3.2). The initial metallicity is assumed to be $100 \times \text{solar}$. P_b is the pressure at the lower boundary. The boundary conditions are those considered at the lower boundary of the atmosphere. The first six cases consider zero-flux boundary conditions, i.e. an unreactive surface, whereas the last five cases consider boundary conditions as discussed in sectiona 2.2 and 3.2. Cases 7 and 10 compute chemistry at an age of ~30 Myr in the early evolution of the planet starting with reduced boundary conditions corresponding to an initial equilibrium composition for $100 \times$ solar metallicity. The last five columns show the volume mixing ratios at 10 mbar of prominent CNO molecules (H₂O, CH₄, NH₃, CO₂ and CO) expected in H₂-rich atmospheres. The H₂O abundance is controlled by saturation at the lower boundary, that is mixing ratios of ~2×10⁻² for the 100-bar cases, except when condensation occurs at higher altitudes (e.g., PT2, PT3 and PT4 profiles), where the saturation minimum becomes ~1×10⁻² for PT2, ~3×10⁻³ for PT3, and lower for PT4. We note that cooler temperature profiles can decrease the H₂O abundance further and affect the abundances of other molecules, especially decrease the CO₂ abundance.