Supporting Information

Photoelectro-Catalyzed Undirected C–H Trifluoromethylation of Arenes: Catalyst Evaluation and Scope

Julia Struwe, and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany

Email: Lutz.Ackermann@chemie.uni-goettingen.de https://www.ackermann.chemie.uni-goettingen.de/

Table of Contents

S 2
S 3
S 4
S 6
S 7
S 9
S19
S20

General Remarks

Catalytic reactions were performed under an inert atmosphere of N₂ using pre-dried glassware and standard Schlenk techniques. Substrates, NaSO₂CF₃, Zn(SO₂CF₃)₂ and solvents were obtained from commercial sources and were used without further purification. Platinum electrodes (10 mm \times 15 mm \times 0.25 mm, 99.9%; obtained from ChemPur® Karlsruhe, Germany) and graphite felt electrodes (10 mm \times 15 mm \times 6 mm, SIGRACELL® GFA 6 EA, obtained from SGL Carbon, Wiesbaden, Germany) were connected using stainless steel adapters. Electrocatalysis was conducted using an AXIOMET AX-3003P potentiostat or a Metrohm MULTI AUTOLAB M204 potentiostat in two-electrode constant current mode. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H-NMR and GC. TLC was performed on Merck TLC Silica Gel 60 F254 with detection under UV light at 254 nm. Chromatographic separations were carried out on Merck Geduran SI-60 (0.040-0.063 mm, 230-400 mesh ASTM). Recycling preparative HPLC system from Japan Analytical Industries (LC-92XX II Series, UV and RI Detector) connected to JAIGEL 2HH series column with HPLC grade chloroform were employed for purification. IR spectra were recorded on a Bruker FT-IR alpha-P device. ESI-MS was recorded on Bruker Daltonik micrOTOF and maXis. The ratios of mass to charge (m/z) are reported and the intensity relative to the base peak (I = 100) is given in parentheses. Melting points (m.p.) were measured on Stuart[®] melting point apparatus SMP3, values are uncorrected. Nuclear magnetic resonance (NMR) spectroscopy was performed at 300 or 400 MHz (¹H-NMR), 75 or 100 MHz (¹³C-NMR, APT), and 282 or 377 MHz (19F-NMR) on Bruker Avance III HD 300, Avance III 300, Avance III 400, Avance III HD 400, Avance Neo 400 instruments. Chemical shifts (δ) are provided in ppm and spectra referred to non-deuterated solvent signal.

General Procedure for the Photoelectrochemical C–H Trifluoromethylation

The photoelectrocatalysis was carried out in an undivided cell with a GF anode (10 mm × 15 mm × 6 mm) and a Pt cathode (10 mm × 15 mm × 0.25 mm). Unless in case of volatile substrates, the (hetero-)arene (0.25 mmol, 1.0 equiv), NaSO₂CF₃ (**2**, 78 mg, 0.50 mmol, 2.0 equiv), LiClO₄ (42 mg, 0.40 mmol) and the photocatalyst (2.0 or 5.0 mol %) were placed into a 10 mL Schlenkflask and closed with a stopper with integrated electrode holders. The vial was evacuated and purged with N₂ three times, before volatile compounds were added and the components were dissolved in CH₃CN (4.0 mL) under N₂. The photoelectrocatalysis was performed at ambient temperature with a constant current of 4.0 mA maintained for 8–16 h under visible light irradiation (2 × Kessil A360N or 2× Kessil A160WE). After completion of the reaction time, the resulting mixture was transferred into a round bottom flask. The vial was rinsed carefully and the GF anode was washed with CH₂Cl₂ (3 × 10 mL) in an ultrasonic bath. Evaporation of the solvent and subsequent column chromatography on silica gel afforded the corresponding products.

Screening of Various Photoelectrocatalysts

Table S1: Comparison of different photoelectrocatalysts in the trifluoromethylation of arene 1.

Entry	Photoelectrocatalyst	Conversion ^[a]	Ratio (3 : 3')
1	[Mes-Acr]ClO ₄	95% (88%)	4.9:1
2	TAC	89% (87%)	6.4:1
3	DDQ	93%	1.7:1
4	DCA	96%	5.0:1
5	DCN	90%	4.3:1
6	TBAI	95%	2.2:1
7	TBABr	97%	1.5:1
8	TBACl	95%	1.4:1
9	CeCl ₃ ·7H ₂ O	90%	3.5:1
10	$CeCl_3 \cdot 7H_2O^{[b]}$	93%	2.6:1
11	$[Ru(bpy)_3](PF_6)_2^{[c]}$	91%	3.3:1
12	[Ni(bpy) ₃]Br ₂ ^[c]	89%	5.2:1
13	$[Fe(bpy)_3](PF_6)_2^{[c]}$	87%	3.8:1
14	$(n-Bu_4N)_4[W_{10}O_{32}]^{[c]}$	85%	5.5:1
15		9%	
16	[Mes-Acr]ClO ₄ ^[d]	7%	
17	[Mes-Acr]ClO4 ^[e]	4%	
18	TBABr ^[d]	39%	12.0:1
19	[Mes-Acr-ClO ₄] ^[f]	63%	20:1

^[a] Reaction conditions: Undivided cell, GF anode (10 mm × 15 mm × 6 mm), Pt cathode (10 mm × 15 mm × 0.25 mm), constant current electrolysis at 4.0 mA. **1** (0.25 mmol), **2** (0.50 mmol), catalyst (5.0 mol %), LiClO₄ (0.1 M), MeCN (4.0 mL), 30–35 °C, 8 h, under N₂, blue LEDs (450 nm); conversions were determined by ¹H-NMR using dimethyl terephthalate as internal standard. Yield in parenthesis refer to isolated yields. ^[b] 390 nm wavelength. ^[c] Photocatalyst (2.0 mol %). ^[d] In the dark under otherwise identical reaction conditions using aluminium foil to cover the vial. ^[e] In the absence of current. ^[f] Zn(SO₂CF₃)₂ (**4**, 0.25 mmol).

Comparison to Electrooxidative Trifluoromethylation

Following the general procedure or the procedure for the electrooxidative trifluoromethylation described in the literature^[1], control experiments were conducted to compare the efficacy of the procedures for the different sulfinate sources $NaSO_2CF_3$ (2) or $Zn(SO_2CF_3)_2$ (4) by using caffeine (5, 0.25 mmol) as arene substrate. After 8 h, the conversion was determined by ¹⁹F-NMR using 1-fluorononane as internal standard.

Table S2: Influence of the irradiation with blue LED light on the trifluoromethylation of caffeine (5).

Entry	Sulfinate	Conditions	Yield (6)
1	Zn(SO ₂ CF ₃) ₂ (4)	Electrooxidation, Undivided Cell ^[a]	(26%)
2	$Zn(SO_2CF_3)_2$ (4)	Electrooxidation, Divided Cell ^[a]	(64%)
3	Zn(SO ₂ CF ₃) ₂ (4)	Photoelectrocatalysis ^[b]	(80%)
4	$NaSO_2CF_3(2)$	Electrooxidation, Undivided Cell ^[a]	(21%)
5	NaSO ₂ CF ₃ (2)	Electrooxidation, Divided Cell ^[a]	(33%)
6	NaSO ₂ CF ₃ (2)	Photoelectrocatalysis ^[b]	70% (81%)

Reaction conditions: ^[a] Divided cell or undivided cell, GF anode (10 mm × 15 mm × 6 mm), GF cathode (10 mm × 15 mm × 6 mm), constant current electrolysis at 4.0 mA. **5** (0.25 mmol), **2** (0.5 mmol) or **4** (0.35 mmol), *n*-Bu₄NClO₄ (0.15 M), DMSO (5.0 mL), 8 h. ^[b] Undivided cell, GF anode (10 mm × 15 mm × 6 mm), Pt cathode (10 mm × 15 mm × 0.25 mm), constant current electrolysis at 4.0 mA. **5** (0.25 mmol), **2** (0.5 mmol) or **4** (0.35 mmol), [Mes-Acr]ClO₄ (5.0 mol), LiClO₄ (0.1 M), MeCN (4.0 mL), 30–35 °C, 8 h, under N₂, blue LEDs (450 nm). Yields refer to the isolated product, conversions were determined by ¹⁹F-NMR using 1-fluorononane as internal standard.

Kinetic Studies

Following the general procedure, caffeine (**5**, 58.2 mg, 0.3 mmol, 1.0 equiv), CF₃SO₂Na (**2**, 93.6 mg, 0.60 mmol, 2.0 equiv), LiClO₄ (42 mg, 0.40 mmol) and the photocatalyst (2.0 or 5.0 mol %) were placed into a 10 mL Schlenkflask and closed with a stopper with integrated electrode holders. After evacuation and purging with N₂ three times, 1-fluorononane (43.8 mg, 0.3 mmol) was added as internal standard followed by CH₃CN (4.0 mL). Equipped with a N₂-ballon, the photoelectrocatalysis was performed at ambient temperature with a constant current of 4.0 mA maintained for 8 h under visible light irradiation (2 × Kessil A360N or 2 × Kessil A160WE). During the course of the reaction, an aliquot of 100 µL was removed via syringe after 2 h, 4 h and 8 h. The sample was diluted with MeCN-d₃, filtered through a short plug of silica gel and analyzed by crude ¹⁹F{¹H}-NMR.

Table S3: Comparison of different photoelectrocatalysts in the trifluoromethylation of caffeine(5).

Me N	$ \begin{array}{ccc} & Me \\ & N \\ & Me \\ & Me \end{array} $	GF Pt cat. PEC (2.0–5.0 mol %) LiClO ₄ MeCN, 8 h, RT	Me N N Me N Me	Me N CF ₃
	5 2	blue LED, CCE @ 4.0 m/	а 6	6
Entry	Photoelectroatalyst ^[a]	6 (%) 2 h	6 (%) 4 h	6 (%) 8 h
1	[Mes-Acr]ClO ₄	34%	67%	79%
2	[TAC]ClO ₄	27%	61%	81%
3	DDQ	28%	62%	88%
4	DCA	30%	73%	83%
5	DCN	23%	70%	94%
6	TBAI	26%	63%	83%
7	TBABr	28%	68%	90%

8	TBACl	29%	73%	94%
9	CeCl ₃ ·7H ₂ O	27%	61%	79%
10	$CeCl_3$ ·7H ₂ O ^[b]	31%	71%	93%
11	$[Fe(bpy)_3](PF_6)_2^{[c]}$	31%	71%	89%
12	[Ni(bpy) ₃]Br ₂ ^[c]	30%	70%	89%
13	$[Ru(bpy)_3](PF_6)_2^{[c]}$	33%	65%	86%
14	$(n-Bu_4N)_4[W_{10}O_{32}]^{[c]}$	34%	67%	79%
15		1%	3%	8%

^[a] Reaction conditions: Undivided cell, GF anode (10 mm × 15 mm × 6 mm), Pt cathode (10 mm × 15 mm × 0.25 mm), constant current electrolysis at 4.0 mA. **5** (0.25 mmol), **2** (0.50 mmol), photoelectrocatalyst (5.0 mol %), LiClO₄ (0.1 m), MeCN (4.0 mL), 30–35 °C, 8 h, under N₂, blue LEDs (450 nm); conversions were determined by ¹⁹F-NMR using 1-fluorononane as internal standard. ^[b] 390 nm wavelength. ^[c] Photocatalyst (2.0 mol %).

Characterization Data

1,3,5-Trimethoxy-2-(trifluoromethyl)benzene (1)

1,3,5-Trimethoxy-2,4-bis(trifluoromethyl)benzene (1)

The general procedure was followed using 1,3,5-trimethoxybenzene (1, 0.25 mmol, 42.0 mg). After electrolysis at 4 mA under blue light irradiation for 8 h, purification by column chromatography (*n*-hexane/EtOAc 10:1) yielded **3** and **3'** as white solids. When [Mes-Acr]ClO₄ was used as photocatalyst, the mono-functionalized product **3** was obtained in 72% (42.3 mg) and the difunctionalized product **3'** in 16% (12.1 mg), while the use of [TAC]ClO₄ gave **3** in 78% (46.0 mg) and **3'** in 9% (6.8 mg).

1,3,5-Trimethoxy-2-(trifluoromethyl)benzene (3)

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 6.14$ (s, 2H), 3.83 (s, 9H).

CF₃ ¹³C-NMR (100 MHz, CDCl₃): $\delta = 163.7$ (C_q), 160.5 (q, ${}^{3}J_{C-F} = 1.4$ Hz, C_q), 124.3 (q, ${}^{1}J_{C-F} = 273.3$ Hz, C_q), 100.5 (q, ${}^{2}J_{C-F} = 30.2$ Hz, C_q), 91.4 OMe (CH), 56.4 (CH₃), 55.5 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -54.2$ (s).

m.p.: 63–64 °C.

MeO

OMe

IR (ATR): $\tilde{v} = 1589, 1459, 1417, 1278, 1232, 1207, 1161, 1092, 1024, 814 cm⁻¹.$

MS (ESI) *m/z* (relative intensity): 259 (100) [M+Na]⁺, 237 (90) [M+H]⁺.

HR-MS (ESI): m/z calcd for $C_{10}H_{12}F_3O_3^+$ [M+H]⁺ 237.0733, found 237.0735.

The spectral data is in accordance with those reported in the literature.^[2]

1,3,5-Trimethoxy-2,4-bis(trifluoromethyl)benzene (3')

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 6.35$ (s, 1H), 3.96 (s, 6H), 3.82 (s, 3H). ¹³**C-NMR** (100 MHz, CDCl₃): $\delta = 162.5$ (C_q), 160.7 (C_q), 123.6 (q, ¹*J*_C-_F = 273.9 Hz, C_q), 106.3 (q, ²*J*_{C-F} = 30.2 Hz, C_q), 92.7 (CH), 64.9 (CH₃), 56.5 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -55.5$ (s).

m.p.: 98–100 °C.

IR (ATR): $\tilde{v} = 1604, 1577, 1311, 1257, 1218, 1105, 1059, 731 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 327 (100) [M+Na]⁺, 305 (10) [M+H]⁺.

HR-MS (ESI): m/z calcd for $C_{11}H_{11}F_6O_3^+$ [M+H]⁺ 305.0607, found 305.0609.

The spectral data is in accordance with those reported in the literature.^[3]

1,3,5-Triethyl-2-(trifluoromethyl)benzene (9)

The general procedure was followed using 1,3,5-triethylbenzene (0.25 Et CF_3 mmol, 40.6 mg). After electrolysis at 4 mA under blue light irradiation for 8 h, purification by column chromatography (*n*-pentane) yielded 9 as a Et ĊF₃ colourless oil. When [Mes-Acr]ClO₄ was used as photocatalyst, the product

9 was obtained in 63% (36.8 mg), while the use of [TAC]ClO₄ gave 57% (32.7 mg). In both cases, the product was obtained as a mixture with a minor amount of the di-functionalized product in a ratio of 3.6:1. The ratio was determined based on the ¹H-NMR of the isolated product.

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 6.97$ (s, 2H), 2.90–2.77 (m, 4H), 2.63 (q, J = 7.6 Hz, 2H), 1.24 (td, J = 7.7, 3.4 Hz, 9H).

¹³C-NMR (100 MHz, CDCl₃): $\delta = 147.4$ (C_q), 144.1 (q, ${}^{3}J_{C-F} = 2.0$ Hz, C_q), 128.7 (CH), 126.3 $(q, {}^{1}J_{C-F} = 276.3 \text{ Hz}, C_{q}), 123.8 (q, {}^{2}J_{C-F} = 28.3 \text{ Hz}, C_{q}), 28.6 (CH_{2}), 28.1 (CH_{2}), 16.7 (CH_{3}),$ 15.3 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -52.4$ (s).

IR (ATR): $\tilde{v} = 2968, 1609, 1575, 1459, 1294, 1199, 1144, 1105, 1062, 1038 cm⁻¹.$

MS (EI) m/z (relative intensity): 230 (10) [M]⁺, 215 (100) [M–CH₃]⁺.

HR-MS (EI): m/z calcd for C₁₃H₁₇F₃⁺ [M]⁺ 230.1277, found 230.1279.

The spectral data is in accordance with those reported in the literature.^[2]

4-Methyl-8-(trifluoromethyl)quinoline (10)

Et

The general procedure was followed using 4-methylquinoline (0.25 mmol, 37.1 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography (n-hexane/EtOAc 10:1) yielded 10 as a colourless oil. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 52% (27.9 mg), while the use of [TAC]ClO₄ gave 60% (31.6 mg).

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.92$ (*d*, *J* = 4.4 Hz, 1H), 8.21 (*d*, *J* = 8.4 Hz, 1H), 8.07 (*d*, *J* = 7.3 Hz, 1H), 7.66–7.55 (m, 1H), 7.33 (d, J = 4.4 Hz, 1H), 2.73 (s, 3H).

¹³**C-NMR** (100 MHz, CDCl₃): δ = 151.0 (CH), 144.7 (q, ${}^{3}J_{C-F}$ = 3.4 Hz, C_q), 144.7 (C_q), 128.9 (C_q), 128.5 (CH), 128.1 (q, ${}^{2}J_{C-F}$ = 30.0 Hz, C_q), 127.7 (q, ${}^{3}J_{C-F}$ = 5.9 Hz, CH), 124.4 (q, ${}^{1}J_{C-F}$ = 275.4 Hz, C_q), 125.0 (CH), 122.8 (CH), 19.1 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -60.0$ (s).

IR (ATR): $\tilde{v} = 1600, 1315, 1294, 1120, 1092, 1079, 1047, 838, 762, 713 cm⁻¹.$

MS (ESI) *m*/*z* (relative intensity): 234 (12) [M+Na]⁺, 212 (100) [M+H]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₁H₉NF₃⁺ [M+H]⁺ 212.0682, found 212.0684.

The spectral data is in accordance with those reported in the literature.^[2]

4,7-Dichloro-8-(trifluoromethyl)quinoline (11)

CL

ČF₃

CL

The general procedure was followed using 4,7-dichloroquinoline (0.25 mmol, 49.5 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography (*n*-hexane/EtOAc 20:1) and purification by recycling preparative HPLC yielded **11** as a white solid.

When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 31% (20.7 mg), while the use of [TAC]ClO₄ gave 35% (23.3 mg).

¹**H-NMR** (300 MHz, CDCl₃): δ = 8.93 (d, *J* = 4.7 Hz, 1H), 8.30 (d, *J* = 9.1 Hz, 1H), 7.69 (d, *J* = 9.1 Hz, 1H), 7.59 (d, *J* = 4.7 Hz, 1H).

¹³**C-NMR** (100 MHz, CDCl₃): δ = 151.1 (CH), 147.5 (C_q), 142.9 (C_q), 136.6 (q, ³*J*_{C-F} = 4.8 Hz, C_q), 131.1 (CH), 128.6 (CH), 125.6 (C_q), 125.5 (q, ²*J*_{C-F}, = 32.2 Hz, C_q), 123.4 (q, ¹*J*_{C-F}, = 275.2 Hz, C_q) 122.2 (CH).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -53.0$ (s).

m.p.: 113–116 °C.

IR (ATR): $\tilde{v} = 1586, 1561, 1485, 1405, 1263, 1204, 1151, 1129, 895, 788 \text{ cm}^{-1}$.

MS (ESI) m/z (relative intensity): 268 (75), $[M(^{37}Cl)+H]^+$, 266 (100) $[M(^{35}Cl)+H]^+$.

HR-MS (ESI): m/z calcd for C₁₀H₅NF₃³⁵Cl₂⁺ [M+H]⁺ 265.9946, found 265.9947.

4,6-Dimethoxy-5-(trifluoromethyl)pyrimidine (12)

 $MeO \xrightarrow{\mathsf{CF}_3} \mathsf{OMe}$ The general procedure was followed using 4,6-dimethoxy pyrimidine (0.25 mmol, 35.0 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography (*n*-hexane/EtOAc 30:1 to 20:1) yielded **12** as a white solid. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 68% (35.4 mg), while the use of [TAC]ClO₄ gave 61% (31.7 mg).

¹H-NMR (400 MHz, CDCl₃): $\delta = 8.46$ (s, 1H), 4.03 (s, 6H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 168.1$ (C_q), 159.1 (CH), 123.0 (q, ¹*J*_{C-F} = 273.0 Hz, C_q), 95.6 (q, ²*J*_{C-F} = 33.7 Hz, C_q), 55.1 (CH₃). ¹⁹F-NMR (377 MHz, CDCl₃): $\delta = -57.0$ (s). **m.p.**: 94–96 °C. IR (ATR): $\tilde{v} = 1573$, 1475, 1414, 1324, 1247, 1107, 1035, 733, 703 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 231 (50) [M+Na]⁺, 209 (100) [M+H]⁺. HR-MS (ESI): *m*/*z* calcd for C₇H₈ F₃N₂O₂N⁺ [M+H]⁺ 209.0538, found 209.0541.

The spectral data is in accordance with those reported in the literature.^[2]

3-Methyl-2-(trifluoromethyl)benzofuran (13)

The general procedure was followed using 3-methylbenzofurane (0.25 mmol, 33.0 mg). After electrolysis at 4 mA under blue light irradiation for 8 h, purification by column chromatography (*n*-hexane) yielded **13** as a

colourless oil. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 71% (35.5 mg), while the use of [TAC]ClO₄ gave 72% (36.0 mg).

¹**H-NMR** (300 MHz, CDCl₃): δ = 7.61 (dd, *J* = 7.7, 1.2 Hz, 1H), 7.52 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.47–7.40 (m, 1H), 7.33 (dd, *J* = 7.5, 1.1 Hz, 1H), 2.42 (s, 3H).

¹³**C-NMR** (100 MHz, CDCl₃): $\delta = 154.2$ (C_q), 138.6 (q, ${}^{2}J_{C-F} = 39.7$ Hz, C_q), 128.5 (C_q), 127.1 (CH), 123.5 (CH), 120.8 (CH), 120.4 (q, ${}^{1}J_{C-F} = 269.4$ Hz, C_q), 118.4 (q, ${}^{3}J_{C-F} = 2.6$ Hz, C_q), 112.0 (CH), 7.8 (q, ${}^{4}J_{C-F} = 1.8$ Hz, CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -62.0$ (s).

IR (ATR): $\tilde{v} = 1635, 1395, 1383, 1301, 1367, 1179, 1111, 1082, 1038, 743 \text{ cm}^{-1}$.

MS (EI) *m*/*z* (relative intensity): 200 (100) [M]⁺.

HR-MS (EI): m/z calcd for C₁₀H₇F₃O [M]⁺ 200.0444, found 200.0448.

The spectral data is in accordance with those reported in the literature.^[2]

N-Methyl-5-(trifluoromethyl)furan-3-carboxamide (14)

The general procedure was followed using *N*-methylfuran-3carboxamide (0.25 mmol, 31.2 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography

(*n*-hexane/EtOAc 1:1 to 1:2) yielded **14** as a pale yellow oil. When [Mes -Acr]ClO₄ was used as photocatalyst, the product was obtained in 69% (33.3 mg), while the use of [TAC]ClO₄ gave 74% (35.7 mg) in both cases as mixture of isomers in a ratio of 3.0:1 as determined based on the ¹H-NMR of the isolated product. The reported NMR data corresponds to the main isomer. **¹H-NMR** (300 MHz, CDCl₃): δ = 7.46 (s, 1H), 6.70 (s, 1H), 6.35 (s br, 1H), 2.94 (d, *J* = 4.9 Hz, 3H).

¹³**C-NMR** (100 MHz, CDCl₃): δ = 161.6 (C_q), 143.9 (q, ³*J*_{C-F} = 2.4 Hz, CH), 139.8 (q, ²*J*_{C-F} = 42.3 Hz, C_q), 123.6 (C_q), 118.9 (q, ¹*J*_{C-F} = 268.7 Hz, C_q), 111.6 (CH), 26.7 (CH₃).

¹⁹**F-NMR** (282 MHz, CDCl₃): $\delta = -61.2$ (s).

IR (ATR): $\tilde{v} = 1406$, 1304, 1266, 1175, 1131, 1105, 935, 894, 734, 702 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 216 (100) [M+Na]⁺, 194 (12) [M+H]⁺.

HR-MS (EI): *m*/*z* calcd for C₇H₆NO₂F₃Na [M+Na]⁺ 216.0243, found 216.0253.

N-Methyl-5-(trifluoromethyl)thiophene-3-carboxamide (15)

The general procedure was followed using *N*-methylthiophen-3carboxamide (0.25 mmol, 35.2 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography

(*n*-hexane/EtOAc 2:1 to 1:1) yielded **15** as a white solid. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 65% (33.8 mg), while the use of [TAC]ClO₄ gave 68% (35.8 mg) in both cases as mixture of isomers in a ratio of 2.7:1 as determined based on the ¹H-NMR of the isolated product. The reported NMR data corresponds to the main isomer.

¹**H-NMR** (400 MHz, CDCl₃): δ = 7.43 (dd, *J* = 3.2, 2.3 Hz, 1H), 7.32–7.03 (m, 1H), 6.16 (s br, 1H), 3.19–2.89 (m, 3H).

¹³**C-NMR** (100 MHz, CDCl₃): δ = 163.5 (C_q), 137.6 (C_q), 129.9 (q, ²*J*_{C-H} = 36.9 Hz, C_q), 129.1 (CH), 127.1 (q, ³*J*_{C-H} = 5.6 Hz, CH), 122.0 (q, ¹*J*_{C-H} = 269.7 Hz, C_q), 27.0 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -52.8$ (s).

IR (ATR): $\tilde{v} = 1638, 1562, 1523, 1431, 1276, 1159, 1119, 1019, 1007 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 232 (100) [M+Na]⁺, 210 (9) [M+H]⁺.

HR-MS (ESI): *m*/*z* calcd for C₇H₆SNOF₃Na [M+Na]⁺ 232.0014, found 232.0020.

*N-(tert-*Butyl)-3,4,5-trimethoxy-2-(trifluoromethyl)benzamide (16)

The general procedure was followed using *N*-(*tert*-butyl)-3,4,5trimethoxybenzamide (0.25 mmol, 42.0 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography (*n*-hexane/EtOAc 4:1 to 2:1) yielded **16** as a white

solid. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 56% (46.9 mg), while the use of [TAC]ClO₄ gave 53% (44.4 mg). The obtained product shows in the ¹H- and ¹³C-NMR in CDCl₃ a splitting of the signals in two sets as a consequence of the limited rotation along the amide bond.

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 6.65$ (s, 1H), 5.45 (s br, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.86 (s, 3H), 1.42 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): $\delta = 167.4$ (C_q), 156.2 (C_q), 153.2 (C_q), 143.4 (C_q), 133.7 (q, ³*J*_{C-} F = 2.6 Hz, C_q), 123.5 (q, ¹*J*_{C-F} = 273.7 Hz, C_q), 113.6 (q, ²*J*_{C-F} = 30.5 Hz, C_q), 106.8 (CH), 61.9 (CH₃), 61.0 (CH₃), 56.4 (CH₃), 52.3 (C_q), 28.6 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -55.6$ (s).

m.p.: 107–108 °C.

IR (ATR): $\tilde{v} = 1641, 1580, 1496, 1453, 1403, 1302, 1116, 1009, 930 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 358 (100) [M+Na]⁺, 336 (5) [M+H]⁺.

HR-MS (ESI): *m*/*z* calcd for C₁₅H₂₀NO₄F₃Na [M+Na]⁺ 358.1237, found 358.1237.

The spectral data is in accordance with those reported in the literature.^[4]

1,3,7-Trimethyl-8-(trifluoromethyl)-3,7-dihydro-1*H*-purine-2,6-dione (6)

The general procedure was followed using caffeine (0.25 mmol, 48.5 mg). After electrolysis at 4 mA under blue light irradiation for 8 h, purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **6** as a white solid. When [Mes-Acr]ClO₄ was used as

photocatalyst, the product was obtained in 71% (46.5 mg), while the use of $[TAC]ClO_4$ gave 70% (45.8 mg).

¹**H-NMR** (400 MHz, CDCl₃): δ = 4.13 (s, 3H), 3.56 (s, 3H), 3.38 (s, 3H).

¹³**C-NMR** (100 MHz, CDCl₃): δ = 155.5 (C_q), 151.4 (C_q), 146.6 (C_q), 138.9 (q, ²*J*_{C-F} = 39.9 Hz, C_q), 118.2 (q, ¹*J*_{C-F} = 270.4 Hz, C_q), 109.7 (C_q), 33.3 (q, ⁴*J*_{C-F} = 1.9 Hz, CH₃), 30.0 (CH₃), 28.3 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -62.4$ (s).

IR (ATR): $\tilde{v} = 1709$, 1665, 1548, 1247, 1202, 1178, 1098, 973, 745 cm⁻¹.

m.p.: 129–130 °C.

MS (ESI) *m*/*z* (relative intensity): 285 (80) [M+Na]⁺, 263 (100) [M+H]⁺.

HR-MS (ESI): m/z calcd for C₉H₁₀N₄F₃O₂⁺ [M+H]⁺ 263.0750, found 263.2754.

The spectral data is in accordance with those reported in the literature.^[2]

Methyl (*S*)-2-((*tert*-butoxycarbonyl)amino)-3-(1-(pyridin-2-yl)-2-(trifluoromethyl)-1*H*-indol-3-yl)propanoate (17)

The general procedure was followed using the tryptophan derivative methyl N^{α} -(*tert*-butoxycarbonyl)-1-(pyridin-2-yl)-L-tryptophanate (0.25 mmol, 98.8 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography (*n*-hexane/EtOAc 4:1) yielded **17** as a white solid. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 49% (56.7 mg), while the use of [TAC]ClO₄ gave 53% (61.3 mg).

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.79-8.50$ (m, 1H), 7.91 (ddd, J = 7.7, 7.7, 1.7 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H), 7.51–7.39 (m, 2H), 7.35–7.03 (m, 3H), 5.23 (s, 1H), 4.69 (t, J = 7.1 Hz, 1H), 3.66 (s, 3H), 3.48 (d, J = 6.6 Hz, 2H), 1.40 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): $\delta = 172.4$ (C_q), 155.1 (C_q), 150.6 (C_q), 149.8 (CH), 138.7 (CH), 138.2 (C_q), 127.1 (C_q), 125.8 (CH), 124.3 (q, ²*J*_{C-F} = 34.2 Hz, C_q), 123.7 (CH), 122.4 (CH), 121.9 (q, ¹*J*_{C-F} = 273.4 Hz, C_q), 121.8 (CH), 120.5 (CH), 115.8 (C_q), 111.4 (CH), 79.9 (C_q), 54.1 (CH), 52.4 (CH₃), 28.4 (CH₃), 27.9 (CH₂).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -53.5$ (s).

m.p.: 108–109 °C.

IR (ATR): $\tilde{v} = 1746, 1714, 1590, 1469, 1438, 1367, 1276, 1113, 1059 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 486 (100) [M+Na]⁺, 464 (100) [M+H]⁺.

HR-MS (ESI): *m*/*z* calcd for C₂₃H₂₄F₃N₃O₄Na⁺ [M+Na]⁺ 486.1611, found 486.1617.

4-(9-Isopropyl-8-(trifluoromethyl)-9*H*-purin-6-yl)morpholine (18)

The general procedure was followed using 4-(9-isopropyl-9*H*-purin-6-yl)morpholine (0.25 mmol, 61.8 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography (*n*-hexane/EtOAc 3:1) yielded **18** as a white solid. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 49% (38.6 mg), while the use of [TAC]ClO₄ gave 56% (44.1 mg).

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.39$ (s, 1H), 4.84 (hept, J = 6.9 Hz, 1H), 4.32 (s br, 4H), 3.84 (t, J = 4.6 Hz, 4H), 1.75 (d, J = 6.8 Hz, 6H).

¹³**C-NMR** (100 MHz, CDCl₃): $\delta = 154.7$ (C_q), 153.4 (CH), 152.5 (C_q), 135.9 (q, ²*J*_{C-F} = 39.0 Hz, C_q), 119.4 (C_q), 119.1 (q, ¹*J*_{C-F} = 270.7 Hz, C_q), 67.2 (CH₂), 67.2 (CH₂), 50.6 (CH), 21.1 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -62.1$ (s).

m.p.: 99–101 °C.

IR (ATR): $\tilde{v} = 1588, 1496, 1441, 1263, 1181, 1163, 1112, 1053, 1009, 930 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 316 (100) [M+H]⁺.

HR-MS (ESI): m/z calcd for C₁₃H₁₇F₃N₅O⁺ [M+H]⁺ 316.380, found 316.1385.

3,7-Dimethyl-1-(5-oxohexyl)-8-(trifluoromethyl)-3,7-dihydro-1*H*-purine-2,6-dione (19)

The general procedure was followed using Pentoxifylline (0.25 mmol, 69.5 mg). After electrolysis at 4 mA under blue light irradiation for 16 h, purification by column chromatography

(*n*-hexane/EtOAc 1:1) yielded **19** as a white solid. When [Mes-Acr]ClO₄ was used as photocatalyst, the product was obtained in 73% (63.1 mg), while the use of [TAC]ClO₄ gave 72% (62.2 mg).

¹**H-NMR** (400 MHz, CDCl₃): δ = 4.13 (t, *J* = 1.6 Hz, 3H), 3.99 (t, *J* = 8.0 Hz, 2H), 3.56 (s, 3H), 2.49 (t, *J* = 6.9 Hz, 2H), 2.13 (s, 3H), 1.67–1.56 (m, 4H).

¹³C-NMR (100 MHz, CDCl₃): $\delta = 208.7$ (C_q), 155.4 (C_q), 151.2 (C_q), 146.7 (C_q), 139.0 (q, ²*J*_{C-F} = 40.1 Hz, C_q), 118.3 (q, ¹*J*_{C-F} = 271.4 Hz, C_q), 109.8 (C_q), 43.2 (CH₂), 41.2 (CH₂), 33.3 (q, ⁴*J*_{C-F} = 2.0 Hz, CH₃), 30.1 (CH₃), 30.0 (CH₃), 27.4 (CH₂), 21.0 (CH₂). ¹⁹F-NMR (282 MHz, CDCl₃): $\delta = -62.4$ (s).

m.p.: 70–72 °C.

IR (ATR): $\tilde{v} = 1705$, 1656, 1546, 1468, 1248, 1170, 1128, 1099, 766 cm⁻¹. **MS** (ESI) m/z (relative intensity): 369 (100) [M+Na]⁺, 347 (10) [M+H]⁺. **HR-MS** (ESI): m/z calcd for C₁₄H₁₇F₃N₄O₃Na⁺ [M+Na]⁺ 369.1145, found 369.1153. The spectral data is in accordance with those reported in the literature.^[1]

Methyl 4-amino-2-hydroxy-3-(trifluoromethyl)benzoate (21a) Methyl 4-amino-2-hydroxy-5-(trifluoromethyl)benzoate (21b) Methyl 4-amino-2-hydroxy-3,5-bis(trifluoromethyl)benzoate (21c)

The general procedure was followed using methyl 4-amino-2-hydroxybenzoate (20, 0.50 mmol, 84.3 mg). After electrolysis at 4 mA under blue light irradiation for 8 h, purification by column chromatography (n-hexane/EtOAc 9:1) yielded 21a and 21b and 21c as white solids. When [Mes-Acr]ClO₄ was used as photocatalyst, the mono-functionalized product **21a** was obtained in 28% (33.8 mg), 21b in 11% (12.8 mg) and the difunctionalized 21c in 3% (4.8 mg), while the use of [TAC]ClO₄ gave **21a** in 50% (58.5 mg), **21b** in 15% (17.9 mg) and **21c** in 9% (14.1 mg).

Methyl 4-amino-2-hydroxy-3-(trifluoromethyl)benzoate (21a)

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 12.05$ (s, 1H), 7.67 (d, J = 8.9 Hz, 1H), 6.12 (d, *J* = 8.9 Hz, 1H), 4.83 (s, 2H), 3.89 (s, 3H). ¹³**C-NMR** (100 MHz, CDCl₃): $\delta = 170.5$ (C_q), 163.5 (q, ³*J*_{C-F} = 1.6 Hz, C_q), 151.3 (C_q), 133.6 (CH), 125.4 (q, ${}^1J_{C-F} = 273.8$ Hz, C_q), 108.4 (CH), 102.4 (C_q), 100.1 (q, ${}^{2}J_{C-F} = 29.4$ Hz, C_q), 52.2 (CH₃).

¹⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -55.1$ (s).

m.p.: 73–75 °C.

IR (ATR): $\tilde{v} = 1627, 1575, 1505, 1441, 1352, 1272, 1105, 1070, 969, 759 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 258 (100) [M+Na]⁺, 236 (90) [M+H]⁺.

HR-MS (ESI): m/z calcd for C₉H₉F₃O₃⁺ [M+H]⁺ 236.0529, found 236.0522.

Methyl 4-amino-2-hydroxy-5-(trifluoromethyl)benzoate (21b)

52.2 (CH₃).

⁹**F-NMR** (377 MHz, CDCl₃): $\delta = -61.6$ (s).

m.p.: 93–95 °C.

IR (ATR): $\tilde{v} = 1671$, 1638, 1331, 1255, 1234, 1211, 1076, 786, 683 cm⁻¹.

MS (ESI) *m*/*z* (relative intensity): 234 (100) [M–H]⁻.

HR-MS (ESI): m/z calcd for C₉H₇F₃O₃⁻ [M–H]⁻ 234.0384, found 234.0374.

Methyl 4-amino-2-hydroxy-3,5-bis(trifluoromethyl)benzoate (21c)

 $\begin{array}{l} \begin{array}{l} \label{eq:heat} \mathsf{F}_{3} \mathsf{C} \\ \mathsf{H}_{2}\mathsf{N} \\ \mathsf{H}_{2$

IR (ATR): $\tilde{v} = 1648, 1591, 1489, 1438, 1232, 1069, 968, 801, 643 \text{ cm}^{-1}$.

MS (ESI) *m*/*z* (relative intensity): 302 (100) [M–H]⁻.

HR-MS (ESI): m/z calcd for C₁₀H₆F₆O₃⁻ [M–H]⁻ 302.0257, found 302.0260.

References

- [1] A. G. O'Brien, A. Maruyama, Y. Inokuma, M. Fujita, P. S. Baran, D. G. Blackmond, *Angew. Chem. Int. Ed.* 2014, 53, 11868–11871.
- Y. Qiu, A. Scheremetjew, L. H. Finger, L. Ackermann, *Chem. Eur. J.* 2020, 26, 3241–3246.
- [3] L. Li, X. Mu, W. Liu, Y. Wang, Z. Mi, C.-J. Li, J. Am. Chem. Soc. 2016, 138, 5809– 5812.
- [4] X. Lu, R. Kawazu, J. Song, Y. Yoshigoe, T. Torigoe, Y. Kuninobu, *Org. Lett.* 2021, 23, 4327–4331.

NMR Spectra

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -11 ppm

