1 SUPPLEMENTARY MATERIALS

- 2 Transcriptomics integrated with metabolomics reveals the
- 3 amelioration of mussel-derived plasmalogens on high-fat

4 diet-induced hyperlipidemia in zebrafish

5

6 Tables

- 7 Table S1. List of primers used in the qPCR experiments.
- 8 Table S2. Profile of 29090 transcripts and their expression levels identified in this study.
- 9 Table S3. Profile of 6161 metabolites identified based on MS/MS.
- 10 $\,$ Table S4. The identified 20 potential metabolomics biomarkers based on MS/MS $\,$

11

- 12 Figure S1. Validation of RNA-seq data using qRT-PCR. These genes were randomly selected.
- 13 The mRNA expression level of each gene in the control group was set as 1, and those in HFD,
- 14 HFD_Pls and HFD_ATV groups were quantified relative to it. The results are represented as
- 15 average ± SD of three biological replicates. Different letters on the data indicate significant
- 16 differences compared with other groups (P < 0.05).
- 17 Figure S2. The SUS plot of the characteristic metabolites using the OPLS-DA model.
- 18 Figure S3. PLS-DA-based ROC curves of the 6 identified biomarkers. The associated AUC,
- 19 95% CI, sensitivity, and specificity were presented.

 $\,$ Table S1. List of primers used in the qPCR experiments.

Gene	Forward Primer (5'-3')	Reverse Primer (5'-3')	Amplicon
Symbol			length (bp)
β-Actin	GATGCGGAAACTGGCAAAGG	GAGGAGGGCAAAGTGGTAAACG	115
Cyp1a	AGGACAACATCAGAGACATCACCG	CACTAGATAGACAACCGCCCAGG	178
Ср	TAAGAAGTGCTTCCCGAACG	GTCGGCCCATAATCCCAAAT	88
Gpx4a	TGCGTTTCTTAGGGTCTGCT	TCTCAGAGTACTTGGCGTGC	223
Lipca	ACTGAGCCTGAAGCCAAGATGAAG	CGTCTACCGACCAGCCATGAATG	184
Ndufs8b	TTACCATTCACAGAGGAGGCT	GGTAGTTGATCGTAGCTGGTTCT	167
Pla2g12b	CTGCTTGGCTTCCAGTTTGAT	TCTGCAAAGGTCTCACATGC	199
Pmt	AGGTGGGATTCAGTAATGTCC	TCCTGTATAAACTCGTCCTTCA	108
Ptgdsb	TGCCTATGACTGACTTCGACCT	AGCAGGAACCATCACTCTTTAGG	185
Sod3a	TGAAGTCTCTCCCATCCCAA	CCCTGACTGAGGTCTCCGTA	179
Sult2st3	GACCACATCAAAAGCTGGCGAAAC	GTGCTGTTACTGACGACACGATC	164
		С	

 $\,$ Table S4. The identified 20 potential metabolomics biomarkers based on MS/MS $\,$

Metabolite	p(corr)[1]	Vip
Isobutyric acid	0.99	1.57
Methylsuccinic acid	0.99	1.57
2-Methoxy-3-methyl-9h-carbazole	0.96	1.53
4-Ethylphenylsulfate	0.93	1.48
2-Hydroxyacetaminophen sulfate	0.88	1.41
Pseudouridine	0.88	1.41
Cysteinyl-lysine	0.86	1.37
Uracil	0.86	1.37
Pa(14:0/0:0)	0.85	1.36
8(s)-Hydroxy-(5z,9e,11z,14z)-eicosatetraenoic acid	0.85	1.35
Gamma-glutamylisoleucine	0.83	1.33
Gamma-glutamylphenylalanine	0.83	1.32
Indole	0.80	1.28
5-Methoxytryptophan	0.80	1.28
Cis-5,8,11,14,17-eicosapentaenoic acid (EPA)	-0.80	1.27
5-alpha-Thdoc	-0.78	1.24
5-Hydroxytryptophol glucuronide	-0.88	1.25
Gamma-glutamyltyrosine	0.76	1.23
3-Methylglutarylcarnitine	0.89	1.43
Glutarylcarnitine	0.87	1.25

