ARTICLE

Electronic Supplementary Material (ESI) for Food & Function

Supplementary Tables

Table S1 Content (umol/g) of cecal SCFAs after L. rhamnosus CCFM1060 and combined with different doses of XOS intervention

Group	Control	Model	Rosiglitazone	L. rhamnosus	L-LXOS	L-HXOS
Acetate	7.0 ± 1.2 ^a	6.7 ± 1.0 ^a	13.0 ± 3.4 ^{bc}	13.9 ± 1.8°	10.8 ± 2.0 ^{bc}	10.3 ± 2.0 ^b
Propionate	2.9 ± 0.9^{a}	2.7 ± 1.0ª	4.6 ± 1.3 ^b	4.7 ± 0.9 ^b	3.7 ± 1.0 ^{ab}	2.7 ± 0.9^{a}
Butyrate	3.1 ± 0.9^{ab}	2.4 ± 0.4^{a}	5.2 ± 0.6 ^{cd}	6.0 ± 1.1^{d}	4.6 ± 0.7°	3.8 ± 1.0^{b}
Total SCFAs	13.0 ± 1.7ª	11.8 ± 1.3ª	22.8 ± 3.6°	24.5 ± 3.2°	19.1 ± 2.4 ^b	16.8 ± 2.5 ^b

The data are presented as the mean ± standard deviation. Different letters in table indicate a significant difference between groups (P < 0.05).

ARTICLE

Journal Name

Table S2 Significantly increased KEGG pathways compared with the model group using two-sided Welch's t test at P < 0.05

OKGG pathways	L. rhamnosus	L-LXOS	L-HXOS
Membrane transport	Phosphotransferase system (PTS)	PTS	PTS
Carbohydrate Metabolism	Amino sugar and nucleotide sugar metabolism	Amino sugar and nucleotide sugar metabolism	Amino sugar and nucleotide sugar metabolism
	Glycolysis/Gluconeogenesis	NS	NS
	Starch and sucrose metabolism	NS	NS
	NS	Pentose phosphate pathway	Pentose phosphate pathway
Energy metabolism	NS	Homologous recombination	Homologous recombination
Lipid Metabolism	Primary bile acid biosynthesis	Primary bile acid biosynthesis	Primary bile acid biosynthesis
	Secondary bile acid biosynthesis	Secondary bile acid biosynthesis	Secondary bile acid biosynthesis
	Glycerolipid metabolism	NS	NS
Metabolism of Other Amino Acids	Phosphonate and phosphinate metabolism	NS	NS
Nucleotic Metabolism	Purine metabolism	Purine metabolism	Purine metabolism
Glycan biosynthesis and metabolism	NS	Peptidoglycan biosynthesis	Peptidoglycan biosynthesis
Replication and repair	Mismatch repair	Mismatch repair	NS
	DNA replication	DNA replication	DNA replication
	Nucleotide excision repair	Nucleotide excision repair	Nucleotide excision repair
Metabolism of Terpenoids and Polyketides	Terpenoid backbone biosynthesis	Terpenoid backbone biosynthesis	Terpenoid backbone biosynthesis
	NS	NS	Zeatin biosynthesis
Metabolism of cofactors and vitamins	NS	One carbon pool by folate	One carbon pool by folate
Translation	NS	NS	Ribosome
	NS	NS	Aminoacyl-tRNA biosynthesis
Amino acid metabolism	NS	NS	Lysine biosynthesis
	NS	NS	Glycine, serine and threonine metabolism
Xenobiotics biodegradation and metabolism	NS	NS	Chlorocyclohexane and chlorobenzer degradation

NS, no impotant significance compared with the model group.

Journal Name

Table S3 Differential KEGG pathways compared with the *L.rhamnosus* group using two-sided Welch's t test at *P* < 0.05

OKGG	L-LXOS	L-HXOS	
Carbohydrate Metabolism	Pyruvate metabolism↓	NS	
	Butanoate metabolism \downarrow	NS	
	Starch and sucrose metabolism \downarrow	Starch and sucrose metabolism ψ	
	C5-Branched dibasic acid metabolism \uparrow	C5-Branched dibasic acid metabolism $igtharpoonup$	
Energy metabolism	Nitrogen metabolism \downarrow	NS	
	NS	Methane metabolism \downarrow	
Lipid Metabolism	Fatty acid metabolism ψ	NS	
	Glycerolipid metabolism $igsymbol{\downarrow}$	Glycerolipid metabolism \downarrow	
	Glycerophospholipid metabolism $igsymbol{\downarrow}$	Glycerophospholipid metabolism $igsymbol{\downarrow}$	
Metabolism of Other Amino Acids	Glutathione metabolism $igvee$	NS	
	Phosphonate and phosphinate metabolism $igvee$	Phosphonate and phosphinate metabolism $igvee$	
Glycan biosynthesis and metabolism	NS	Lipopolysaccharide biosynthesis \uparrow	
	N-Glycan biosynthesis个	N-Glycan biosynthesis个	
	Other glycan degradation个	Other glycan degradation个	
Metabolism of Terpenoids and Polyketides	NS	Zeatin biosynthesis个	
Metabolism of cofactors and vitamins	Thiamine metabolism $igsymbol{\downarrow}$	Thiamine metabolism \downarrow	
	NS	Riboflavin metabolism ψ	
	NS	Pantothenate and CoA biosynthesis Υ	
	NS	Vitamin B6 metabolism个	
	NS	One carbon pool by folate \uparrow	
	NS	Porphyrin and chlorophyll metabolism $igstar{}$	
	NS	Folate biosynthesis \downarrow	
Translation	NS	Ribosome个	
Amino acid metabolism	Tyrosine metabolism ψ	Tyrosine metabolism $igsymbol{\downarrow}$	
	NS	D-Arginine and D-ornithine metabolism $igsidea$	
	NS	Valine, leucine and isoleucine biosynthesis \uparrow	
	NS	D-Glutamine and D-glutamate metabolism \uparrow	
Xenobiotics biodegradation and metabolism	Nitrotoluene degradation \downarrow	Nitrotoluene degradation \downarrow	
	Aminobenzoate degradation \downarrow	NS	
Folding, sorting and degradation	Sulfur relay system \downarrow	Sulfur relay system \downarrow	

 \uparrow , significantly increased compared with the *L.rhamnosus* group; \downarrow , significantly decreased compared with the *L.rhamnosus* group; NS, no impotant significance compared with the *L.rhamnosus* group.

Supplementary Figures

Fig. S2 FBG and OGTT 1 weeks after STZ injection. Graphs show mean \pm standard deviation; n = 8. Different superscript letters in a column indicate statistical differences between groups (P < 0.05).

Fig. S3 Effects of *L. rhamnosus* CCFM1060 and combined with different doses of XOS on the adipose tissue of diabetic mice. (A) Epididymal fat weight. (B) Kidney fat weight. Graphs show mean \pm standard deviation; n = 8. Different superscript letters in a column indicate statistical differences between groups (*P* < 0.05).

Fig. S4 Effects of *L. rhamnosus* CCFM1060 and combined with different doses of XOS on the structure at the phylum level of the gut flora (A) Microbial distribution at the phylum level. (B) Relative abundance of *Actinobacteria, Bacteroidetes, Firmicutes* and *Proteobacteria.* Graphs show mean \pm SD; n = 6; Different superscript letters in a column indicate statistical differences between groups (*P* < 0.05).

Fig. S5 Effects of *L. rhamnosus* CCFM1060 and combined with different doses of XOS on relative abundance of the *L. rhamnosus* in the intestine of mice. Different superscript letters in a column indicate statistical differences between groups (P < 0.05)

	Control Model		D volue
	Amino sugar and nucleotide sugar metabolism		6 70a 4
	Rinno sugar and increotine sugar inclusionsin		0.796-4
	Biotin metabolism		3.946-3
	Lipoic acid metabolism		4.22e-3
	Riboflavin metabolism	<u> </u>	4.84e-3
	Zeatin biosynthesis		9.36e-3
	Two-component system		0.012
	Flagellar assembly		0.012
	Glyoxylate and dicarboxylate metabolism		0.013
	Butanoate metabolism		0.014
	Homologous recombination		0.018
	Selenocompound metabolism		0.019
	Sulfur metabolism		0.022
	Citrate cycle		0.022
(Chlorocyclohexane and chlorobenzene degradation	6	0.024
	Secondary bile acid biosynthesis		0.027
	One carbon pool by folate		0.029
	Mismatch repair		0.030
	Primary bile acid biosynthesis	-	0.030
	Terpenoid backbone biosynthesis		0.031
This journal is (D-Glutamine and D-glutamate metabolism		0.035
	ABC transporters		0.035
	DNA replication		0.038
	Bacterial chemotaxis		0.039
	Phenylalanine metabolism	-	0.047
	Ribosome		0.048

Fig. S6 Differential KEGG pathways between the model and control groups using two-sided Welch's t test at P < 0.05