Supplementary materials

The supplementary file containing Supplementary eTables 1-2, Supplementary eMethods 1-2, Supplementary eFigure 1, and Reference are provided.

Supplementary eTables:

eTable 1. List of the *C.elegans* strains used in this study.

eTable 2. List of the primers used in this study for qPCR analysis.

Supplementary eMethods:

eMethod 1. The specific process of synchronization and administration in *C.elegans*. eMethod 2. The detailed protocol of widely targeted metabolome method.

Strain name	Ge	enotype		
N2	Wil	ld-type Bristol		
IR1511	N2;	Ex001[p _{myo-3} DsRed::LGG-1;p _{dct-1} DCT-1::GF	P]	
DA2123	adI	s2122 [<i>lgg-1p</i> :::GFP:: <i>lgg-1</i> + <i>rol-6</i> (su1006)]		
TJ356	zIs	356 [daf-16p::daf-16a/b::GFP + rol-6(su1006)]		
RW1596	stE	x30 [<i>myo-3p</i> :::GFP:: <i>myo-3</i> + <i>rol-6</i> (su1006)]		
SJ4103	zcIs	s14 [<i>myo-3</i> ::GFP(mit)]		
CF1038	daf	-16(mu86) I.		
TK22	men	<i>v-1(kn1)</i> III.		
The information presented in this table is provided from Caenorhabditis Genetics Center and Prof. Tavernarakis at				
the	University	of	Crete.	

eTable 1.	. List of t	he <i>C.elegans</i>	strains	used in	this study	v.
						, -

Cana nama	Primer sequences				
Gene name	Forward	Reverse			
Reference gene					
pmp-3	GTTCCCGTGTTCATCACTCA	ACACCGTCGAGAAGCTGTAGA			
Mitochondrial proteostasis					
ubl-5	ATGATTGAAATCACAGTAAA	TCATTGGTAGTAGAGCTCGA			
clpp-1	GGCAGTGTAACAGCAGGACT	GGCGCTCATGAAACGATCAC			
haf-1	TTGGAACCGTTGGTCAGGAG	CCACTTGGTCAGCTTGTTGC			
hsp-16.2	GGAACGCCAATTTGCTCCAG	AGATTCGAAGCAACTGCACC			
hsp-6	ACAGGCCGTTACCAACTCTG	TGTTGACGGTGGTTCCCAAA			
hsp-60	AGGGATTCGAGAGCATTCGTCAAG	TGTGGCGACTTGAGCGATCTCTTC			
atfs-1	CAATCACCATCAAAATCGGCG	CTTGCTCAATGTCCATTTCGAAC			
lonp-1	CATGTACCCGAAGGAGCAA	GCGATCACTTTTTCCCGAAT			
Mitochondrial biogenesis					
aak-2	TCTTCCGCCATCCGCATATC	CCTCTTCATCGGGTCTACGC			
sir-2.1	CGATGCACCCGAAACAAACA	TTCTGCCTTACAGGAGCACG			
skn-1	TCAACCGTCCAATGGGTCTC	GTGCCCTTCTCTCCAGCAAT			
hmg-5	CGTCCAAGTGTTCCTCCAAGTG	CTTCGCTTCGTCTGTGTACTTCTT			
		Т			
nhr-65	TGGACGAAATGCTTGGCTTG	ACGTTGAAAAGCTCCGCGAT			
Mitochondrial dynamics					
phb-2	GGAGGATTGTCGACGGATTT	GTTTGGTCTGGCACGGATA			
drp-1	AGCCCACCAATGAGCTTGTC	GAGCACTGACCGCTCTTTCT			
fis-1	CTCGACTTTCATACCGAACAGG	CTCCGATCCTCTGATCCAACTA			
fzo-1	GACAGGTGCCGACCTTATG	CTCTGGAACGCTCATTCTTTCT			
eat-3	TGATGCGTTTAGAGCAGCCA	TGAAGAAGCATACGCAGGCA			
anc-1	CGGTTCACAAAGGACGAGTAT	CCGAGTACGATACGTGGATTTC			
Mitophagy					
dct-1	TGGTATGTCAGAATCGTGGGTG	ACGGACAGTCTTTGGAGGTG			
pdr-1	AGCCACCGAGCGATTGATTGC	GTGGCATTTTGGGCATCTTCTTG			
pink-1	AGCATATCGAATCGCAAATGAGTTA	TCGACCGTGGCGAGTTACAAG			
	G				
lgg-1	CGTGCCGAAGGAGACAAGAT	CTTCCTCGTGATGGTCCTGG			
rheh-1	GGCTCCAACCTTACCACTCC	GCAAATCCTACT GCTGCTCC			
ced-9	AAAGGCACAGAGCCCACC	CGTTCCCATAACTCGCATC			
bec-1	ACGAGCTTCATTCGCTGGAA	TTCGTGATGTTGTACGCCGA			
unc-51	CTACACGTGGTGACTCTCCG	ATGCAATACGACGCGAAAGC			
daf-16	GAGGAGCACAGCTTCCAGAAT	ATTGAGCTCCGCCTCCAATG			

eTable 2. List of the primers used in this study for qPCR analysis.

eMethod 1. The specific process of synchronization and administration in *C.elegans*.

Synchronization: the young adult worms with intensive eggs were cleaned and collected by M9 buffer, then lysed with alkaline lysate for 5 min. The alkaline lysate consists of 50% 10-fold dilutions of sodium hypochlorite solution (NaOCl, 6~14% active chlorine basis, Macklin) and 50% 1 M sodium hydroxide solution. After centrifugation and washing 2~3 times with M9 to remove the lysis solution, their eggs were transferred into blank NGM plates and developed into L4 larvae at 20°C.

Administration: after 20 min under UV exposure, 90 mm NGM-plates with sufficient food (*E. coli* OP50) were followed by the addition of the corresponding concentration of M9 buffer or drug solution (400 μ L) on the surface and placed at 4°C for storage after air-drying on super-clean table. The three iridoids or extract are water soluble to use directly dissolved in M9 buffer, while UA was dissolved in a DMSO stock solution. The corresponding concentration of DMSO at 1% final that not affect nematode physiological functions.

eMethod 2. The detailed protocol of widely targeted metabolome method.

The experiment set a total of three groups: normal aging, high-fat exacerbated aging, and 100 μ M Asp administration under high-fat exacerbated aging. Each group of about 2500 nematodes was continuously cultured until 9 days and then collected, washed completely, and extracted the mitochondrial fraction. 200 μ M FUDR in the NGM medium was used to inhibit progeny production. In combination with the BCA kit (Kang century Biotechnology Co., China), a final sample of 50 μ L 0.5 μ g protein equivalents/ μ L per group was obtained for subsequent metabolomics.

The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, ExionLC AD, https:// sciex.com.cn/; MS, QTRAP® System, https://sciex.com/). The analytical conditions were as follows, UPLC: column, Waters ACQUITY UPLC HSS T3 C18 (1.8 μ m, 2.1 × 100 mm); column temperature, 40°C; flow rate, 0.4 mL/min; injection volume, 2 μ L; solvent system, water (0.1% formic acid): acetonitrile (0.1% formic acid); gradient program, 95:5 V/V at 0 min, 10:90 V/V at 11.0 min, 10:90 V/V at 12.0 min, 95:5 V/V at 12.1 min, 95:5 V/V at 14.0 min.

LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear ion trap mass spectrometer (QTRAP), QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-Spray interface, operating in positive and negative ion mode and controlled by Analyst 1.6.3 software (Sciex). The ESI source operation parameters were as follows: source temperature 500°C; ion spray voltage (IS) 5500 V (positive), -4500 V (negative); ion source gas I (GSI), gas II (GSII), curtain gas (CUR) were set at 55, 60, and 25.0 psi, respectively; the collision gas (CAD) was high. Instrument tuning and mass calibration were performed with 10 and 100 µM polypropylene glycol solutions in QQQ and LIT modes, respectively. A specific set of MRM transitions were monitored for each period according to the metabolites eluted within this period.

Unsupervised principal component analysis (PCA) was performed by statistics function prcomp within R (www.r-project.org). The data was unit variance scaled before unsupervised PCA.

The hierarchical cluster analysis (HCA) results of metabolites were presented as heatmaps with dendrogram. And HCA was carried out by R package Complex-Heatmap. For HCA, normalized signal intensities of metabolites (unit variance scaling) are visualized as a color spectrum.

Differential metabolites selected: For two-group analysis, differential metabolites were determined by VIP (VIP > 1) and *P*-value (*P*-value < 0.05, Student's t test). VIP values were extracted from OPLS-DA result, which also contain score plots and permutation plots, was generated using R package MetaboAnalystR. The data was log transform (log₂) and mean centering before OPLS-DA. In order to avoid overfitting, a permutation test (200 permutations) was performed.

KEGG annotation and enrichment analysis: Identified metabolites were annotated using KEGG Compound database (http://www.kegg.jp/kegg/ compound/), annotated metabolites were then mapped to **KEGG** Pathway database (http://www.kegg.jp/kegg/pathway.html). Pathways with significantly regulated metabolites mapped to were then fed into metabolite sets enrichment analysis (MSEA), their significance was determined by hypergeometric test's *p*-values. The Rich Factor is the ratio of the number of differential metabolites in the corresponding pathway to the total number of metabolites annotated to that pathway, which a higher value indicating greater enrichment.