Water extract of Goji berries improves neuroinflammation induced by high-fat high-fructose diet based on bile acid-mediated gut-brain axis pathway

Wei Dong ^a, Yujie Huang ^a, Yifan Shu ^a, Xia Fan ^a, Xinyi Tian ^a, Yamei Yan ^{b,c}, Jia

Mi^{b,c}, Lu Lu ^{b,c}, Xiaoxiong Zeng ^{a,*}, Youlong Cao ^{b,c,*}

- ^a College of Food Science and Technology, Nanjing Agricultural University, Nanjing
- 210095, Jiangsu, China
- ^b Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture
- and Forestry Sciences, Yinchuan, 750002, Ningxia, China
- ^cNational Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China

^{*}To whom correspondence should be addressed. Tel & Fax: +86 25 84396791, E-mail: <u>zengxx@njau.edu.cn</u> (X. Zeng); +86 951 6886783, E-mail address: <u>youlongckh@126.com</u> (Y. Cao)

Supplementary Materials and methods

BAs analysis

The cortex, hippocampus and liver were collected and immediately frozen in chilled on dry ice. Samples were stored at 80 °C until analysis. BAs in serum, liver, and brain were measured according to previously reported methods with slight modifications.^{1,2} Briefly, an aliquot of 100 μ L of plasma was mixed with 200 μ L acconitrile (LC-MS grade), which contained internal standard (CA-d4, GCDCA-d4 and DCA-d4). Intestinal content, cortex, hippocampus, and liver samples were homogenized and extracted in acetonitrile containing deuterated internal standards (CA-d4, GCDCA-d4 and DCA-d4). Then the supernatant was collected by centrifugation at 12000 rpm and 4 °C for 20 min. The solvent of the supernatant is evaporated by termovap sample concentrator. The dried powder was reconstituted with 100 μ L pure acetonitrile and filtered through a 0.45 μ m membrane. Bile acids were then analyzed by UPLC-MS/MS (Sciex Triple Quad 5500 LC-MS/MS, USA).

References

- G. Xie, W. Zhong, H. Li, Q. Li, Y. Qiu, X. Zheng, H. Chen, X. Zhao, S. Zhang, Z. Zhou, S. H. Zeisel and W. Jia, Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption, *Faseb J.*, 2013, 27, 3583-3593.
- A. Castellanos-Jankiewicz, O. Guzman-Quevedo, V. S. Fenelon, P. Zizzari, C. Quarta, L. Bellocchio, A. Tailleux, J. Charton, D. Fernandois, M. Henricsson, C. Piveteau, V. Simon, C. Allard, S. Quemener, V. Guinot, N. Hennuyer, A. Perino, A. Duveau, M. Maitre, T. Leste-Lasserre, S. Clark, N. Dupuy, A. Cannich, D.

Gonzales, B. Deprez, G. Mithieux, D. Dombrowicz, F. Backhed, V. Prevot, G. Marsicano, B. Staels, K. Schoonjans and D. Cota, Hypothalamic bile acid-TGR5 signaling protects from obesity, *Cell Metab.*, 2021, **33**, 1483-1492.

Fig. S1. Effects of LBE on ileum and cecum bile acid levels. (A) Effects of LBE on total feces BA levels (n = 8). (H) Feces BA classes and BA profile of mice after LBE intervention (n = 8). Data are presented as mean \pm SEM, n = 8. **p* < 0.05, ***p* < 0.01 compared to the NC group, #*p* < 0.05, ##*p* < 0.01 compared to the HFFD group.

Target	Primer Sequence (5'-3')
gene	
TNF-α	FW: CTCATGCACCACCATCAAGG
	RV: ACCTGACCACTCTCCCTTTG
IL-1β	FW: AGCTTCAAATCTCGCAGCAG
	RV: TCTCCACAGCCACAATGAGT
IL-6	FW: CTCTGGCGGAGCTATTGAGA
	RV: AAGTCTCCTGCGTGGAGAAA
PSD-95	FW: TCTGTGCGAGAGGTAGCAGA
	RV: AAGCACTCCGTGAACTCCTG
CYP7A1	FW:AGCAACTAAACAACCTGCCAGTACTA
	RV: GTCCGGATATTCAAGGATGCA
CYP27A1	FW: GCCTCACCTATGGGATCTTCA
	RV: TCAAAGCCTGACGCAGATG
FXR	FW: AGGAGCCCCTGCTTGATGT
	RV: GCGGGTTCTCAGGCTGGTA
FGFR4	FW: GGCTCCATGACCGTCGTACA
	RV: ATGACCACTCGAGGAGCTGC
SHP	FW: AGGGTAGAGGCCATGAGGAG
	RV: ACGATCCTCTTCAACCCAGA
ZO-1	FW: TGAGTGCGTTTCTCTCCCTT
	RV: CCCTCTGTGTTCCTCATGGT
Occludin	FW: AGCACTTAACCTGCCTGGAT
	RV: AGCCTGTGGAAGCAAGAGAT
Claudin-1	FW: AGCTGCCTGTTCCATGTACT
	RV: CTCCCATTTGTCTGCTGCTC
GAPDH	FW: GGACTTACAGAGGTCCGCTT
	RV: CTATAGGGCCTGGGTCAGTG

 Table S1 Primer sequences utilized in the RT-qPCR Experiments