Chronic exposure to paraben promotes nonalcoholic fatty liver disease in

association with the changes of gut microbiota and lipid metabolism

Yilin Ren^{1‡}, Xinyi Shi^{1‡}, Jing Mu¹, Shenyin Liu¹, Xin Qian¹, Wenlong Pei¹, Shanhong

Ni¹, Zhengduo Zhang¹, Lei Li^{1, 2*}, Zhan Zhang^{1,2*}

Supplementary data

Figure S1. The effects of parabens exposure on intestine. The weight of (A) heart, (B) spleen and (C) kidney. The length of small intestine (D) and colon (E). (F) Representative histopathological observation of colon (4 µm). The colon was stained with hematoxylin and eosin (H&E) and observed using optical microscopy, scale bar: 100 µm. *P< 0.05, compared with the respective control; #P< 0.05, ##P< 0.01 compared with the ND group.

Figure S2. Effect of Mep or EtP on inflammation in mice fed with ND or HFD.Serum levels of (A) alanine transarninase (ALT) and (B) aspartate aminotransferase (AST). The relative expression of inflammatory genes, including (C) *IL1β*, (D) *IL6*, (E) *TNFα*, (F) *Adgre1* and (G) *MCP-1*. Data were presented as the mean \pm SEM and analyzed by ordinary one-way ANOVA with Tukey's multiple comparisons. **P*< 0.05, ***P*< 0.01, compared with the respective control; #*P*< 0.05, ##*P*< 0.01, compared with the ND group.

Figure S3. The effects of parabens exposure on the metabolic profile in HFD-fed mice. (A) The projection to latent structures discriminant analysis (PLS-DA) score plot among control, Mep and EtP groups fed with ND or HFD. (B) The numbers of significantly altered metabolites among control, Mep and EtP groups fed with ND or HFD. Heat map analysis of differential metabolites involved in enriched pathways after exposure to MeP (C) and EtP (D). Red color represents an upregulation of the metabolite while green color represents a downregulation. Enrichment of pathways was indicated by coloured bars on the left. Figure S4. Taxonomic differences of fecal microbiota at the genus level. (A) Taxonomic differences between ND and HFD groups. Taxonomic differences between control and Mep (B) or EtP (C) groups fed with ND at the genus level. Taxonomic differences between control and Mep (E) or EtP (F) group fed with HFD at the genus level. The statistical difference was analyzed by Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001, compared with the respective control.

Figure. S5. Predicted functions of the metagenome from 16S rRNA sequencing. Functional annotation of the predicted metagenome based on 16S rRNA data was performed by PICRUSt 2 and STAMP was used to identify significant pathways. (A) The numbers of significantly enriched pathways among control, MeP and EtP groups fed with ND or HFD. (B) The common enriched pathways between ND and HFD fed mice after MeP exposure. (C) The common enriched pathways between MeP and EtP exposure in HFD fed mice. Enriched pathways with same trend in ND (D) and HFD (E) fed mice after MeP exposure. Enriched pathways with same trend in HFD fed mice after MeP (F) and EtP (G) exposure. Differences between groups were determined using the Welch's t-test.

Figure. S6. Association analysis of genera with serum chemsitry or metabolites.

Association analysis of differential genera with serum chemsitry or metabolites in AA metabolism pathway between HFD and HFD+ MeP (A) or (B) HFD+ EtP groups. Significant correlations are denoted by stars (*P < 0.05; **P < 0.01, Spearman test).

Higher taxonomy of genera (phyla) and superpathways of metabolites were indicated by coloured bars.

Diet Formulas	Normal diet (ND)	High fat diet (HFD)
	kcal%	kcal%
Fat	10.00	60.00
Carbohydrate	70.00	20.00
Protein	20.00	20.00
Total	100.00	100.00
Ingredient	g/Kg	g/Kg
Casein	189.56	258.45
L-Cystine	2.84	3.88
Corn Starch	479.78	0.00
Maltodextrin 10	118.48	161.53
Sucrose	69.00	94.08
Cellulose, BW200	47.39	64.61
Soybean Oil	23.70	32.30
Lard	18.96	316.60
Mineral Mix S10026B	47.39	64.61
Vitamin Mix V10001C	0.95	1.29
Choline Bitartrate	1.90	2.58
FD&C Red Dye #40	0.00	0.00
FD&C Yellow Dye #5	0.04	0.00
FD&C Blue Dye #1	0.01	0.06

Supplementary Table 1. Diet composition

Gene name	Forward sequence	Reverse sequence
mGAPDH	AACTTTGGCATTGTGGAAGG	GGATGCAGGGATGATGTTCT
mIL1β	TAGACAACTGCACTACAGGCTCCGA	GGGTCCGACAGCACGAGGCT
mIL6	ACAAAGCCAGAGTCCTTCAGA	GGTCCTTAGCCACTCCTTCTG
mTNFa	GCTGAGCTCAAACCCTGGTA	AGTACTTGGGCAGATTGACCT
mAdgrel	ATACCCTCCAGCACATCCAG	AGTTTGCCATCCGGTTACAG
mMcp-1	TCCCAATGAGTAGGCTGGAG	TCTGGACCCATTCCTTCTTG
mGlut2	TCCCTTGGTTCATGGTTGCT	CCCAAGGAAGTCCGCAATGT
mPfkfb1	ATGAGCTGCCCTATCTCAAGT	GTCCCGGTGTGTGTGTTCACAG
mPfkl	ACGTGAAGGATCTGGTGGTTC	ATTCGGTCGAAGGCTGAAGG
mPfkm	AGCATTCATACCTTGGGCAT	CCATGAAGAGCATCATGCAG
mAldoA	CAGATGAGTCCACCGGAAGC	AATGCAGGGATTCACACGGT
mPdha1	TCATTTGCAAAATTACGGGA	AAGATGCTTGCCGCTGTATC
mPdk1	TTACTCAGTGGAACACCGCC	GTTTATCCCCCGATTCAGGT
mCs	GGACAATTTTCCAACCAATCTGC	TCGGTTCATTCCCTCTGCATA
mIdh3g	GGTGCTGCAAAGGCAATGC	TATGCCGCCCACCATACTTAG
mMe2	GGCAGGTCAAGGTACAAGGA	CTGCTTGCTGCACCACCT
mFbp1	GCACAGCTCTATGGTATCGCT	CACAGGTAGCGTAGGACGAC
mFbp2	ACAGAAAGACCACGGAGGATG	TGTCCTGTGGAAAGAGCGAC
mCD36	GCTGTGTTTGGAGGCATTCT	TGGGTTTTGCACATCAAAGA
mAcaala	CCTGACTCCTATGGGGATGA	CCCTTGTCATCCAGGACAGT

Supplementary Table 2. Primer sequence

mCptla	CCAGGCTACAGTGGGACATT
mAdrp	CTGTCTACCAAGCTCTGCTC
mPPARy	GATGGAAGACCACTCGCATT
mSrebf1	TACTTCTTGTGGCCCGTACC
mAcaca	GAGAGGGGTCAAGTCCTTCC
mFasn	CCCTTGATGAAGAGGGATCA
mCYP4A14	GGAGCAATATACGAGTCCTGC
mCYP2J9	CAAGAGGAGGCTCACTACCTT
mCYP2C50	ACTGTGGTGTTGCATGGATATG
mEphx2	ACCACTCATGGATGAAAGCTACA
mCyp4A30B	GTTACCAGGGTAGTGTCCAGT
mCYP2C67	TGTAGTCTTGGTGCTTTGTCTG
hGAPDH	ACAACTTTGGTATCGTGGAAGG
hAdrp	TTGCAGTTGCCAATACCTATGC
hCD36	CTTTGGCTTAATGAGACTGGGAC
hCpt1a	ATCAATCGGACTCTGGAAACGG
hPPARγ	GATGCCAGCGACTTTGACTC
hSrebf1	CGGAACCATCTTGGCAACAGT
hAcaca	CATGCGGTCTATCCGTAGGTG
hFasn	ACAGCGGGGAATGGGTACT
hCYP4A11	CCATCCCCATTGCACGACTT
hCYP2C8	CATTACTGACTTCCGTGCTACAT

AAGGAATGCAGGTCCACATC CGATGCTTCTCTTCCACTCC CAACCATTGGGTCAGCTCTT TCAGGTCATGTTGGAAACCA ACATCCACTTCCACACGA CAAGGCGTTAGGGTTGACAT CAGAGTCCGCCATGATTTTGA TGATGACTCCAAACACATGGC GAGAAGCGCCTTGTGTTTTTC TCAGGTAGATTGGCTCCACAG GCACTCTCAAGTAAATCAGGTGT ACAATAGGCTGTGAGCCAAAATA GCCATCACGCCACAGTTTC CCAGTCACAGTAGTCGTCACA GCAACAAACATCACCACACCA TCAGGGAGTAGCGCATGGT ACCCACGTCATCTTCAGGGA CGCTTCTCAATGGCGTTGT GTGTGACCATGACAACGAATCT GACTGGTACAACGAGCGGAT CAGGTAGACAAGCAGGTAGGG CTCCTGCACAAATTCGTTTTCC

m, Mus musculus; *h*, Homo sapiens.