Supplementary Information (SI) for Food & Function. This journal is © The Royal Society of Chemistry 2024

Supplementary Materials

Supplemental Table 1 Some previous examples of IVIVR establishment with extended application to small intestinal digestion data, and how they would fit in the proposed IVIVR framework in this paper. For the definition of each IVIVR level, see Table 2.1. Detailed descriptions on the *in vitro* and *in vivo* methods for each row of the table can be found in the reference given in the table.

Food	In vitro method	In vivo method	Data used for IVIVR establishment	Findings	IVIVR	Reference
Extended applic	cation to small intestinal di	gestion data				
Reconstituted skim milk powder	Static model – rotating incubator:INFOGEST static digestion protocolDynamic model - DiDGI	Growing pig model (slaughter method)	 <i>In vitro</i> SDS-PAGE, peptide profile of five most abundant milk proteins <i>In vivo</i> SDS-PAGE, peptide profile of five most abundant milk proteins across four small 	 High Spearman correlation (σ) in the peptide pattern after gastric step for <i>in vivo</i> vs. <i>in vitro</i> dynamic digestion data (σ = 0.85) and <i>in vivo</i> vs. <i>in vitro</i> static digestion data (σ = 0.81) 	Level A	Reference (Egger et al. 2019) (Monro, Mishra, and Venn 2010)
	 dynamic <i>in vitro</i> digestion system: Controlled gastric emptying rate and intragastric pH profile to follow human study data 		intestinal sections (proximal jejunum, median jejunum, distal jejunum, and ileum)	• Highest Spearman correlation in the peptide pattern after small intestinal step for <i>in vivo</i> distal jejunum vs. dynamic <i>in vitro</i> digestion ($\sigma = 0.51$) and <i>in vivo</i> median jejunum vs. static <i>in vitro</i> digestion ($\sigma = 0.58$)		
	• Followed by static small intestinal <i>in vitro</i> digestion			• Comparable protein patterns between <i>in vivo</i> and <i>in vitro</i> samples	Level D	
White bread, fruit bread, muesli bar, instant mashed potatoes, canned chickpeas	 Static model – stirred container: Chewed food bolus by human subjects directly followed by small intestinal digestion 	Human study (capillary blood sampling) in healthy adults	 <i>In vitro</i> glycemic glucose equivalent, calculated from glucose and fructose released during digestion <i>In vivo</i> glucose disposal rate, calculated from glycemic response curve 	• Linear correlation (R ² = 0.93) between glycemic glucose equivalent and glucose disposal rate, after correction for non-linearity of <i>in vivo</i> data using ratios of the linear to quadratic responses to glucose	Level C	(Monro, Mishra, and Venn 2010)
Boiled potato of various cultivars + water	 Static model – shaking water bath: Modified Englyst protocol (Englyst, Kingman, and Cummings 1992) 	Published data (international tables of glycemic index)	 <i>In vitro</i> starch hydrolysis <i>In vivo</i> glycemic index (GI) 	• Strong, positive correlation between <i>in vivo</i> GI values vs. <i>in vitro</i> starch hydrolysis, particularly at 90 and 120 min $(r = 0.91, p < 0.01)$.	Level C	(Ek et al. 2014)

Food	In vitro method	In vivo method	Data used for IVIVR establishment	Findings IV	/IVR	Reference
White bread, spaghetti, rice, biscuits, lentils, chickpeas, beans, peas, boiled potatoes, crisp potatoes	 Static model – shaking water bath: Incubation in excess gastric fluid (gastric phase) followed by pH adjustment and excess small intestinal fluid 	Published data (international tables of glycemic index)	 <i>In vitro</i> hydrolysis index evaluated at 30 to 180 min <i>In vivo</i> glycemic index 	 Correlation coefficient (r) for <i>in vivo</i> Leve glycemic index vs. <i>in vitro</i> HI evaluated at different endpoints ranged between 0.84 to 0.91 (90-min endpoint) Regression equation with the highest correlation was defined as a model to estimate <i>in vivo</i> GI from <i>in vitro</i> HI 	el C	(Goñi, Garcia- Alonso, and Saura- Calixto 1997)
	addition (small intestinal phase)			• Similar trend between <i>in vitro</i> and <i>in vivo</i> Leve data: legume products had low results and cereal products had high results	el D	
Field peas of different varieties (ground, screen size = 2.38 mm)	Static model – shaking water bath:Pepsin-pancreatin digestion	Adult pig model (cannulated at the terminal ileum)	 <i>In vitro</i> degree of starch hydrolysis (the endpoint of gastric digestion) <i>In vivo</i> coefficient of apparent ileal starch digestibility (CAID) 	• Linear correlation (not 1:1 correlation) Level between <i>in vitro</i> and <i>in vivo</i> data, adjusted $R^2 = 0.755$	el C	(Montoya and Leterme 2012)
Breakfast cereal with milks (3.1% or 9.3%-wt protein) with normal (80:20) or modified (60:40) casein:whey ratio The cereal was milled and sieved (1.5 mm)	 Semi-dynamic model – rheometer equipped with jacketed beaker: Controlled gastric and duodenal phase pH using a pH-stat titrator Addition of the entire gastric or duodenal fluids in the beginning of the respective phase 	Human study (fingerprick blood sampling and blood sampling from venous catheter) in healthy young adults	 <i>In vitro</i> digesta apparent viscosity, total amino acids concentration, and reducing sugar concentration at the end of gastric (60 min) duodenal (120 min) digestion <i>In vivo</i> plasma total amino acids (TAA), blood glucose concentration, gastric emptying (measured as plasma paracetamol concentration) at the end of gastric and duodenal digestion 	 Possible association between <i>in vivo</i> Level <i>slower</i> gastric emptying vs. <i>in vitro</i> digesta viscosity based on observed trends in <i>in vitro</i> viscosity and <i>in vivo</i> paracetamol concentration Similar trends between <i>in vivo</i> 90-min blood glucose concentration and <i>in vitro</i> reducing sugar concentration at the end of <i>in vitro</i> duodenal digestion Similar trends between <i>in vivo</i> plasma total amino acids (TAA) and <i>in vitro</i> TAA concentration after gastric digestion 	el D	(Kung et al. 2019)
Semi-synthetic diets containing faba bean, pea,	 Static model – stirred flask In vitro digestion protocol for protein and 	: Growing pig model (cannulated in the l ileum)	• Aparent ileal digestibility of protein and four amino acids	• Linear correlations between <i>in vitro</i> and Leve <i>in vivo</i> apparent ileal digestibility of protein and the amino acids $(0.43 \le r^2 \le r^$	el C	(Święch and Buraczewsk a 2001)

Food	In vitro method	In vivo method	Data used for IVIVR	Findings	IVIVR	Reference
			establishment			
and lupin of different varieties	amino acids ileal digestibility prediction (Boisen and Fernández 1995)		(cystine, lysine, methionine, threonine)	0.94). Highest correlation $(r^2 \ge 0.89)$ for cystine and methionine, lower correlation for lysine, and poor correlation for threonine		
Commercial tofu • and soya milk, with standardized amount of protein, fat, and calories	Dynamic in vitro digestion (DiDGI) consisted of a gastric compartment, and two compartments of small intestine (duodenum, jejunum + ileum)	Mini pig model (cannulated around the gastric corpus, the pyloric sphincter, or the distal ileum)	 Dry matter content (duodenal and ileal) Proteolysis (gastric and duodenal) Molecular weight determination by HPSEC (gastric) Protein digestibility 	 Same range of <i>in vitro</i> and <i>in vivo</i> values for nitrogen digestibility when the supernatant fraction of <i>in vitro</i> ileal digesta was considered as the absorbed fraction No clear <i>in vivo-in vitro</i> similarity for results from the gastric phase Agreement between <i>in vivo</i> and <i>in vitro</i> trend in the duodenal global kinetics of proteolysis and ileal nitrogen digestibility 	Level D	(Reynaud et al. 2021)

Supplemental Table 2 Data used for identifying data points that deviate from 1:1 line in the Level A IVIVR plots of case study 2. Data with %*in vitro-in vivo* difference greater than 50% are identified as deviating data points and shown in red fonts. In vivo data were obtained from Roy et al. (2022), *in vitro* data were obtained from Roy et al. (2021). Bias and MAPE were calculated using Eqn. (3) and (4), respectively.

Food	Time	Avera	nged value	(··· ··)/·· *100	Absolute
rood	(min)	In vivo (y)	In vitro (x)	(y-x)/y *100	(y-x)/y*100
A. Intragastric li	iquid pH				
Cow milk	30	5.94	5.31	11%	11%
	90	4.55	3.72	18%	18%
	150	3.23	2.8	13%	13%
	210	3.00	2.06	31%	31%
Goat milk	30	5.96	5.77	3%	3%
	90	4.37	4.27	2%	2%
	150	3.30	2.85	14%	14%
	210	2.17	2.02	7%	7%
Sheep milk	30	5.76	5.22	9%	9%
	90	4.46	3.76	16%	16%
	150	3.43	2.85	17%	17%
	210	3.00	1.95	35%	35%
			Average difference	Bias = 15%	MAPE = 15%
B. Curd dry mat	tter (DM) rete	ntion			
Cow milk	30	0.65	0.60	2%	2%
	90	0.43	0.49	-15%	15%
	150	0.40	0.41	-1%	1%
	210	0.26	0.31	-19%	19%
Goat milk	30	0.58	0.47	19%	19%
	90	0.35	0.45	-27%	27%
	150	0.23	0.43	-90%	90%
	210	0.15	0.42	-185%	185%
Sheep milk	30	0.55	0.61	-11%	11%
	90	0.37	0.56	-48%	48%
	150	0.28	0.50	-75%	75%
	210	0.14	0.45	-227%	227%
			Average difference	Bias = -56%	MAPE = 60%
C. Curd protein	retention				
Cow milk	30	0.77	0.79	-3%	3%
	90	0.60	0.63	-4%	4%
	150	0.58	0.54	6%	6%
	210	0.41	0.39	5%	5%
Goat milk	30	0.70	0.69	2%	2%
	90	0.49	0.67	-37%	37%
	150	0.33	0.66	-100%	100%
	210	0.23	0.64	-179%	179%
Sheep milk	30	0.58	0.77	-33%	33%

Food	Time	Aver	aged value	(y, y)/y *100	Absolute
Food	(min)	In vivo (y)	In vitro (x)	(y-x)/y · 100	(y-x)/y*100
	90	0.43	0.72	-69%	69%
	150	0.37	0.66	-78%	78%
	210	0.18	0.61	-239%	239%
			Average difference	Bias = -61%	MAPE = 63%
D. Curd fat rete	ention				
Cow milk	30	0.80	0.90	-13%	13%
	90	0.52	0.73	-41%	41%
	150	0.48	0.59	-22%	22%
	210	0.33	0.46	-39%	39%
Goat milk	30	0.77	0.80	-4%	4%
	90	0.49	0.76	-55%	55%
	150	0.34	0.73	-114%	114%
	210	0.22	0.70	-215%	215%
Sheep milk	30	0.61	0.82	-35%	35%
	90	0.42	0.75	-80%	80%
	150	0.36	0.68	-86%	86%
	210	0.17	0.59	-253%	253%
_			Average difference	Bias = -80%	MAPE = 80%

	Cow milk	Goat milk	Sheep milk
рН			
Slope	0.96	0.97	0.87
Intercept	0.86	0.32	1.15
r / \mathbb{R}^2	0.99/0.97	1.00/0.99	0.99/0.98
р	0.013	0.004	0.008
Curd DM	retention		
Slope	1.14	8.21	2.45
Intercept	-0.09	-3.29	-0.96
r / \mathbb{R}^2	0.98/0.96	0.99/0.97	0.99/0.98
р	0.018	0.014	0.009
Curd prot	ein retention		
Slope	0.87	9.56	2.21
Intercept	0.08	-5.93	-1.14
r / \mathbb{R}^2	0.99/0.98	0.97/0.93	0.97/0.94
р	0.011	0.034	0.032
Curd fat r	etention		
Slope	1.00	5.22	1.83
Intercept	-0.14	-3.45	-0.91
r / \mathbb{R}^2	0.97/0.93	0.98/0.97	0.98/0.97
р	0.035	0.015	0.016

Supplemental Table 3 *In vivo-in vitro* linear regression coefficients (slope, intercept), correlation coefficient (r), and the significance of the correlation (p) for the digestion parameters examined in case study 2 (Section 3.3.2), examined at individual milk type level. Significant correlation is present when p < 0.05.

Supplemental Table 4 Data used for identifying data points that deviate from 1:1 line in the Level A IVIVR plots of case study 3. Data with %*in vitro-in vivo* difference greater than 30% are identified as deviating data points and shown in red fonts. In vivo data were obtained from Nadia et al. (2021), *in vitro* data were obtained from Nadia et al. (2022) at digestion condition of 0 min proximal phase followed by up to 180 min distal phase. Bias and MAPE were calculated using Eqn. (3) and (4), respectively.

Food	Time (min)	Ave	eraged value	(y-y)/y *100	Absolute
Food	Time (mm)	In vivo (y)	In vitro (x)	(y-x)/y 100	(y-x)/y*100
Moisture conten	t, dry basis (g H	2 O/g DM)			
Couscous	30	3.36	3.76	-12%	12%
	60	3.86	4.07	-5%	5%
	120	4.12	4.32	-5%	5%
Rice couscous	30	2.93	3.70	-26%	26%
	60	3.32	3.71	-12%	12%
	120	3.82	3.80	1%	1%
Rice grain	30	2.98	2.78	7%	7%
	60	3.01	3.05	-1%	1%
	120	3.40	3.33	2%	2%
Pasta	30	2.77	2.57	7%	7%
	60	3.12	3.01	4%	4%
	120	3.44	2.81	18%	18%
Rice noodle	30	2.80	3.19	-14%	14%
	60	3.23	3.44	-6%	6%
	120	3.64	3.52	3%	3%
			Average difference	Bias = -3%	MAPE = 8%
Normalized hard	lness				
Couscous	30	0.15	0.31	-104%	104%
	60	0.06	0.13	-120%	120%
	120	0.05	0.08	-61%	61%
Rice couscous	30	0.02	0.31	-1630%	1630%
	60	0.01	0.32	-4017%	4017%
	120	0.04	0.26	-572%	572%
Rice grain	30	0.58	0.94	-62%	62%
	60	0.46	0.82	-77%	77%
	120	0.53	0.57	-8%	8%
Pasta	30	0.72	1.00	-38%	38%
	60	0.53	0.71	-34%	34%
	120	0.51	0.64	-26%	26%
Rice noodle	30	0.50	0.86	-71%	71%
	60	0.29	0.78	-169%	169%
	120	0.39	0.59	-54%	54%
			Average difference	Bias = -470%	MAPE = 470%
Dry matter reter	ntion (DMt/DM))			
Couscous	30	0.89	0.91	-2%	2%

Food	Time (min)	Ave	eraged value	(v v)/v *100 Absolut	Absolute
Food	Time (iiiii)	In vivo (y)	In vitro (x)	(y-x)/y 100	Absolute (y-x)/y*100 22% 38% 14% 1% 16% 38% 16% 38% 16% 38% 22%
	60	0.73	0.89	-22%	22%
	120	0.63	0.87	-38%	38%
Rice couscous	30	0.84	0.73	14%	14%
	60	0.72	0.72	1%	1%
	120	0.59	0.69	-16%	16%
Rice grain	30	0.94	0.94	0%	0%
	60	0.84	0.95	-13%	13%
	120	0.69	0.95	-38%	38%
Pasta	30	0.84	0.97	-16%	16%
	60	0.77	0.90	-17%	17%
	120	0.73	0.97	-34%	34%
Rice noodle	30	0.88	0.95	-9%	9%
	60	0.81	0.98	-21%	21%
	120	0.72	1.02	-42%	42%
			Average difference	Bias = -17%	MAPE = 19%

Supplemental Table 5 *In vivo-in vitro* linear regression coefficients (slope, intercept), correlation coefficient (r), and the significance of the correlation (p) for the digestion parameters examined in case study 3 (Section 3.3.3), examined at individual food type level. Significant correlation is present when p < 0.05.

	Couscous	Pasta	Rice couscous	Rice grain	Rice noodle			
Moisture	content of so	olid fraction						
Slope	1.38	0.88	8.08	0.77	2.35			
Intercept	-1.79	0.66	-26.85	0.79	-4.72			
r / \mathbb{R}^2	0.99/0.99	0.57/0.32	0.93/0.87	0.91/0.82	0.97/0.94			
р	0.070	0.617	0.237	0.276	0.164			
Normaliz	Normalized hardness (Ht/H0)							
Slope	0.46	0.62	-0.42	0.08	0.25			
Intercept	0.01	0.11	0.14	0.46	0.21			
r / \mathbb{R}^2	0.99/0.99	1.00/0.99	-0.97/0.95	0.25/0.06	0.32/0.10			
р	0.076	0.052	0.149	0.839	0.793			
DM reten	tion							
Slope	6.28	0.08	5.80	-23.53	-2.54			
Intercept	-4.84	0.70	-3.40	23.15	3.30			
r / \mathbb{R}^2	0.98/0.97	0.06/0.004	0.97/0.94	-0.94/0.88	-1.00/1.00			
р	0.117	0.960	0.155	0.225	0.040			

References

- Boisen, S., and J. A. Fernández. 1995. "Prediction of the apparent ileal digestibility of protein and amino acids in feedstuffs and feed mixtures for pigs by in vitro analyses." *Animal Feed Science and Technology* 51 (1): 29-43. <u>https://doi.org/https://doi.org/10.1016/0377-8401(94)00686-4</u>. <u>https://www.sciencedirect.com/science/article/pii/0377840194006864</u>.
- Egger, Lotti, Olivia Ménard, Christian Baumann, Desirée Duerr, Patrick Schlegel, Peter Stoll, Guy Vergères, Didier Dupont, and Reto Portmann. 2019. "Digestion of milk proteins: Comparing static and dynamic in vitro digestion systems with in vivo data." *Food Research International* 118: 32-39. <u>https://doi.org/https://doi.org/10.1016/j.foodres.2017.12.049</u>. <u>https://www.sciencedirect.com/science/article/pii/S0963996917309031</u>.
- Ek, Kai Lin, Shujun Wang, Les Copeland, and Jennie C. Brand-Miller. 2014. "Discovery of a lowglycaemic index potato and relationship with starch digestion in vitro." *British Journal of Nutrition* 111 (4): 699-705. <u>https://doi.org/10.1017/S0007114513003048</u>. <u>https://www.cambridge.org/core/article/discovery-of-a-lowglycaemic-index-potato-andrelationship-with-starch-digestion-in-vitro/815C62D570B6AD9746726335E6BE6021</u>.
- Englyst, H. N., S. M. Kingman, and J. H. Cummings. 1992. "Classification and measurement of nutritionally important starch fractions." *Eur. J. Clin. Nutr.* 46, no. Suppl 2: S33-S50.
- Goñi, Isabel, Alejandra Garcia-Alonso, and Fulgencio Saura-Calixto. 1997. "A starch hydrolysis procedure to estimate glycemic index." *Nutrition Research* 17 (3): 427-437. <u>https://doi.org/https://doi.org/10.1016/S0271-5317(97)00010-9</u>. <u>http://www.sciencedirect.com/science/article/pii/S0271531797000109</u>.
- Kung, Bonnie, Sylvie L. Turgeon, Laurie-Eve Rioux, G. Harvey Anderson, Amanda J. Wright, and H. Douglas Goff. 2019. "Correlating in vitro digestion viscosities and bioaccessible nutrients of milks containing enhanced protein concentration and normal or modified protein ratio to human trials." *Food & Function* 10 (12): 7687-7696. <u>https://doi.org/10.1039/C9FO01994D</u>. <u>http://dx.doi.org/10.1039/C9FO01994D</u>.
- Monro, J. A., S. Mishra, and B. Venn. 2010. "Baselines representing blood glucose clearance improve in vitro prediction of the glycaemic impact of customarily consumed food quantities." *Br J Nutr* 103 (2): 295-305. <u>https://doi.org/10.1017/s0007114509991632</u>.
- Montoya, Carlos A., and Pascal Leterme. 2012. "Validation of an in vitro technique for determining ileal starch digestion of field peas (Pisum sativum) in pigs." *Animal Feed Science and Technology* 177 (3-4): 259-265. <u>https://doi.org/10.1016/j.anifeedsci.2012.06.008</u>.
- Nadia, J., John E. Bronlund, Harjinder Singh, R. Paul Singh, and Gail M. Bornhorst. 2022. "Contribution of the proximal and distal gastric phases to the breakdown of cooked starch-rich solid foods during static in vitro gastric digestion." *Food Research International* 157: 111270. <u>https://doi.org/https://doi.org/10.1016/j.foodres.2022.111270</u>. <u>https://www.sciencedirect.com/science/article/pii/S0963996922003271</u>.
- Nadia, J., A. G. Olenskyj, N. Stroebinger, S. M. Hodgkinson, T. G. Estevez, P. Subramanian, H. Singh, R. P. Singh, and G. M. Bornhorst. 2021. "Tracking physical breakdown of rice- and wheat-based foods with varying structures during gastric digestion and its influence on gastric emptying in a growing pig model." *Food & Function* 12: 4349-4372.
- Reynaud, Yohan, Angélique Couvent, Aline Manach, David Forest, Michel Lopez, Daniel Picque, Isabelle Souchon, Didier Rémond, and Didier Dupont. 2021. "Food-dependent set-up of the DiDGI® dynamic in vitro system: Correlation with the porcine model for protein digestion of soya-based food." *Food Chemistry* 341: 128276.
 <u>https://doi.org/https://doi.org/10.1016/j.foodchem.2020.128276</u>.
 <u>https://www.sciencedirect.com/science/article/pii/S0308814620321385</u>.
- Roy, D., Paul J. Moughan, Aiqian Ye, Suzanne M. Hodgkinson, Natascha Stroebinger, Siqi Li, Anant C. Dave, Carlos A. Montoya, and Harjinder Singh. 2022. "Structural changes in milk from different

species during gastric digestion in piglets." *Journal of dairy science* 105 (5): 3810-3831. https://doi.org/10.3168/jds.2021-21388. http://europepmc.org/abstract/MED/35221062

https://doi.org/10.3168/jds.2021-21388.

- Roy, D., A. Ye, P. J. Moughan, and H. Singh. 2021. "Impact of gastric coagulation on the kinetics of release of fat globules from milk of different species." *Food Funct* 12 (4): 1783-1802. https://doi.org/10.1039/d0fo02870c.
- Święch, E., and L. Buraczewska. 2001. "*In vivo* and *in vitro* protein and amino acid digestibility of legume seeds in pig diets." *Journal of Animal and Feed Sciences* 10 (Suppl. 2): 159-162. https://doi.org/10.22358/jafs/70049/2001. https://doi.org/10.22358/jafs/70049/2001.